1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lena [83]
3 years ago
7

Find a formula for the sum of n terms. Use the formula to find the limit as n → [infinity]. lim n → [infinity] n 2 + i n 8 n i =

1
Mathematics
1 answer:
Masteriza [31]3 years ago
5 0

Complete Question

Find a formula for the sum of n terms.   \sum\limits_{i=1}^n  ( 8 + \frac{i}{n} )(\frac{2}{n} )

Use the formula to find the limit as n \to \infty

 

Answer:

   K_n  =  \frac{n + 73 }{n}

  \lim_{n \to \infty} K_n  =  1

Step-by-step explanation:

     So let assume that

                  K_n  =  \sum\limits_{i=1}^n  ( 8 + \frac{i}{n} )(\frac{2}{n} )

=>             K_n  =  \sum\limits_{i=1}^n  ( \frac{16}{n} + \frac{2i}{n^2} )

=>              K_n  = \frac{2}{n}  \sum\limits_{i=1}^n (8) + \frac{2}{n^2}   \sum\limits_{i=1}^n(i)

Generally  

         \sum\limits_{i=1}^n (k) = \frac{1}{2}  n  (n + 1)

So  

      \sum\limits_{i=1}^n (8) = \frac{1}{2}  * 8*  (8 + 1)

      \sum\limits_{i=1}^n (8) = 36

K_n  = \frac{2}{n}  \sum\limits_{i=1}^n (8) + \frac{2}{n^2}   \sum\limits_{i=1}^n(i)  

and  

  \sum\limits_{i=1}^n (i) = \frac{1}{2}  n  (n + 1)

  Therefore

         K_n  = \frac{72}{n} + \frac{2}{n^2}   *  \frac{1}{2}  n (n + 1 )

         K_n  = \frac{72}{n} +    \frac{1}{n}   (n + 1 )

         K_n  = \frac{72}{n} +   1 +  \frac{1}{n}

        K_n  =  \frac{72 +  1 +  n }{n}

        K_n  =  \frac{n + 73 }{n}

Now  \lim_{n \to \infty} K_n  =  \lim_{n \to \infty} [\frac{n + 73 }{n} ]

=>     \lim_{n \to \infty} [\frac{n + 73 }{n} ]  =    \lim_{n \to \infty} [\frac{n}{n}  +  \frac{73 }{n}  ]

=>     \lim_{n \to \infty} [\frac{n + 73 }{n} ]  =    \lim_{n \to \infty} [1 +  \frac{73 }{n}  ]

=>     \lim_{n \to \infty} [\frac{n + 73 }{n} ]  =    \lim_{n \to \infty} [1 ] + \lim_{n \to \infty}  [\frac{73 }{n}  ]

=>    \lim_{n \to \infty} [\frac{n + 73 }{n} ]  =  1  +  0

Therefore

      \lim_{n \to \infty} K_n  =  1

You might be interested in
Не
Mnenie [13.5K]

Answer:

weather

we

the

are

ear

wear

Step-by-step explanation:

same question again

I really do not understand this question hope my answer is correct

6 0
3 years ago
What is the answer for the algebra equation Ab•2b
CaHeK987 [17]

Answer:

\huge\bold\purple{      2a•3b          }

3 0
3 years ago
Estimate. Then find the product 6 x 219
brilliants [131]

1310 real answer 1314

5 0
3 years ago
Read 2 more answers
Does any know this answer
vichka [17]
F(n) = 75*1/5n

This is because the base value would be 75 and it is divided by 5 each part of the sequence. 
5 0
3 years ago
Point C is in the interior of
PolarNik [594]

Answer:

Point C is in the interior of angle ABD.

8 0
2 years ago
Other questions:
  • In each of the following statements, identify the boldfaced and underlined number as the value of a population parameter or a sa
    5·1 answer
  • 861 ÷3 show work for this problem please
    7·1 answer
  • What is a common denominator for 2/8 and 3/4 in simplest form?
    7·2 answers
  • Write a rule for the nth term of the arithmetic sequence. d =1/2 , a6 =18.
    8·1 answer
  • Plz answer it fast urgent
    13·1 answer
  • The bases of a trapezoid are 16.8 yards and 6.9 yards. What is the average of the two bases? 23.7 yd 4.95 yd 9.9 yd 11.85 yd
    6·1 answer
  • What is the volume of a cube whose sides are each 1 3/4 ft?
    7·1 answer
  • Write this ratio as a fraction in simplest form without any units.<br> 45 days to 5 weeks
    12·1 answer
  • Plsss help pls...........
    13·2 answers
  • Let f (7) = 12 and g(2) = 7, then what is the value of (f o g)(2)
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!