1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Hatshy [7]
3 years ago
9

One kilogram of water fills a 0.140 m^3 rigid container at an initial pressure of 1.8 MPa. The container is then cooled to 40°C.

Determine the initial temperature and final pressure of the water.
Engineering
1 answer:
Pavel [41]3 years ago
7 0

Answer:

T1 = 299.18 °C

P2 = 0.00738443 MPa

Explanation:

From the data, we can get two properties for the initial condition. These are pressure and specific volume.

The pressure is 1.8 MPa and the specific volume, we can get it with the mass and volume of the container, since it’s filled this is also the volume of the water in it.

v=\frac{vol (m^{3})}{mass (kg)} = \frac{0.140 m^{3}}{1 kg} = 0.140 \frac{ m^{3}}{kg}

When we check in the thermodynamic tables, the conditions for saturation at 1.8 MPa we found the following:

P^{sat} = 1.8 MPa

T^{sat} = 207.12 C

v_{g} = 0.1103\frac {m^{3}}{kg} specific volume for the saturated vapor  

v_{l} = 0.001167 \frac{m^{3}}{kg} specific volume for the saturated liquid  

Since the specific volume in our condition is higher that the specific volume for the saturated vapor, we have a superheated steam.  

Looking in the thermodynamic tables for superheated steam we found that the temperature where the steam has a specific volume of 0.140 \frac{ m^{3}}{kg} at 1.8 MPa is 299.18 °C. This is the initial temperature in the container.

Since the only information that we have about the final condition is that the container was cooled. We can assume that it was cooled until a condition of saturation. So, the final pressure for the water will be the pressure of saturation for a temperature of 40°C. From thermodynamic tables we get:

P^{sat} at 40C = 0.00738443 MPa

You might be interested in
Identify factors that can cause a process to become out of control. Give several examples of such factors.
Oliga [24]

Answer:

Explained

Explanation:

This situation can occur because of various factors such as:

  • Gradual deterioration of lubrication and coolant.
  • change of environmental condition such as temperature, humidity, moisture, etc.
  • Change in the properties of incoming raw material
  • An increase or decrease in the temperature of the heat treating operation
  • Debris interfering with the manufacturing process.
4 0
3 years ago
Reduce the force F ij = + (2 5 ) kN to point A(2m,3m) that acts on point B( 3m,5m) - .
Alexxx [7]

Given :

Force, \vec{F}= (2\hat{i} + 5\hat{j})\ kN.

Force is acting at point A( 2 m, 3 m ) and B( 3 m, 5 m )

To Find :

The work done by force F .

Solution :

Displacement vector between point A and B is :

\vec{d} = (3-2)\hat{i} + (5-3)\hat{j}\\\\\vec{d} = \hat{i} + 2\hat{j}

Now, we know work done is given by :

W = \vec{F}.\vec{d}\\\\W= (2\hat{i} + 5\hat{j}).(\hat{i}+\hat{2j})\\\\W = (2\times 1) +( 5\times 2) \ kJ\\\\W = 12 \ kJ

W = 12000 J

Therefore, work done by force is 12000 J .

6 0
3 years ago
A 3-ft-diameter vertical cylindrical tank open to the atmosphere contains 1-ft-high water. The tank is now rotated about the cen
arlik [135]

Answer:

The angular velocity is 7.56 rad/s

the maximum water height is 2 ft

Explanation:

The z-position as a function of r is equal to

z_{s(r)} =h_{0} -\frac{w^{2}(R^{2}-2r^{2}   }{4g} (eq. 1)

where

h0 = initial height = 1 ft

w = angular velocity

R = radius of the cylinder = 1.5 ft

zs(r) = 0 when the free surface is lowest at the centre

Replacing and clearing w

w=\sqrt{\frac{4gh_{0} }{R^{2} } } =\sqrt{\frac{4*32.17*1}{1.5^{2} } } =7.56rad/s

if you consider the equation 1 for the free surface at the edge is equal to

z_{s(R)} =h_{0} +\frac{w^{2}R^{2}   }{4g} =1+\frac{(7.56^{2})*(1.5^{2} ) }{4*32.17} =1.99ft=2ft

7 0
3 years ago
Milk has a density of as much as 64.6 lb/ft3. What is the gage pressure at the bottom of the straw 6.1 inches deep in the milk?
gregori [183]

Answer:

Explanation:

1 inch is 0.0833333feet

6.1 inches is 0.5083 feet

Density = mass/volume

64.6 = mass/0.50833

mass = 64.6 x 0.5083 =32.83618lb

3 0
3 years ago
When passing another vehicle, when is it acceptable to drive over the
miss Akunina [59]

Answer:

Under no circumstances

Explanation:

I'm not 100% sure why, but I remember hearing that you're not suposed to go over the speed limit no matter what

7 0
3 years ago
Read 2 more answers
Other questions:
  • A rod is 2m long at temperature of 10oC. Find the expansion of the rod, when the temperature is raised to 80oC. If this expansio
    7·1 answer
  • There is a proposal in Brooklyn to construct a new mid-rise apartment building on a vacant lot at the intersection of Avenue A a
    8·1 answer
  • A cast-iron tube is used to support a compressive load. Knowing that E 5 10 3 106 psi and that the maximum allowable change in l
    11·1 answer
  • Given a two-dimensional steady inviscid air flow field with no body forces described by the velocity field given below. Assuming
    8·1 answer
  • Build a 32-bit accumulator circuit. The circuit features a control signal inc and enable input en. If en is 1 and inc is 1, the
    13·1 answer
  • A 500-km, 500-kV, 60-Hz, uncompensated three-phase line has a positivesequence series impedance. z = 5 0.03 1 + j 0.35 V/km and
    11·1 answer
  • can someone please define these three vocabulary words for my stem class i will give brainliest if i can figure out how
    15·1 answer
  • Pedro holds a heavy science book over his head for 10 minutes. Petro is doing work during that time. True or False
    8·1 answer
  • Explain what the engineering team should advise in the following scenario.
    7·1 answer
  • I love touching the atmospheres crest
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!