Answer: Manufacturing engineers may be responsible for solving production problems, conducting cost-benefit assessments, or designing and manufacturing goods and systems using computer-aided design software. Plant engineers and process engineers are two terms used by professionals in this industry. Manufacturing engineers are in charge of new and existing production lines' technical management, maintenance, and development. Employers are looking for people that are commercially aware and have good technical and analytical skills. They are in charge of keeping production costs low while preserving the product or service's quality, and they have considerable project expertise and insight.
Explanation: See above.
I hope this helps.
Aerospace engineers design, analyze, model, simulate, and test aircraft, spacecraft, satellites, missiles, and rockets. Aerospace technology also extends to many other applications of objects moving within gases or liquids. Examples are golf balls, high-speed trains, hydrofoil ships, or tall buildings in the wind. As an aerospace engineer, you might work on the Orion space mission, which plans on putting astronauts on mars by 2020. Or, you might be involved in developing a new generation of space telescopes, the source of some of our most significant cosmological discoveries. But outer space is just one of many realms to explore as an aerospace engineer. You might develop commercial airliners, military jets, or helicopters for our airways. And getting even more down-to-earth, you could design the latest ground and sea transportation, including high-speed trains, racing cars, or deep-sea vessels that explore life at the bottom of the ocean.
Answer:
Explanation: Analysing the goal of the family is not a requisite feature of setting a career goal. It is an individual person's ability and topic of interest so the family goal cannot be taken into consideration. Brainliest
Explanation:
Answer / Explanation:
To proper understand the answers that is given to the question, we need to understand some basic terms that has been used in the question.
Energy: This can be refereed to as the quantitative property that is transferred to an object for the purpose of the object working or to heat up the object. It can also be referred to as conserved quantity that is energy can be converted from one form or state to another but cannot destroyed.
Power: This can be defined as the rate of doing work or transferring heat per unit time from one state to another. The SI Units of power is watt which is equal to one joule per second.
Hence, the formula that links energy and power is:
Energy = Power x Time
Now. referring back to the question (a) asking how much energy do we save if we execute at the current speed and turn off the system when the computation is complete: The answer is = 50%. That is 50% of the energy is saved.
(b) If we recall the formula for calculating energy,
we have:
Energy = 1 /2 Load x V²
Changing the frequency does not affect the energy.However, it affects the power.
So therefore, the new energy is 1 / 2 Load x ( 1/2 V)² ,
reducing it to about 1 /4 of the old energy.