<h2>Answer with Explanation </h2>
I have been as of late pondering, on the off chance that I take a sufficiently incredible vitality source (photon) and I have an ideal mirror precisely before it and expect a "producer" shot the light towards the mirror. As impeccable mirrors assimilate no vitality of ANY sort from photons, should this imply the ideal mirrors could never move because of exchange of force of the light? it depends on the mass of the mirror, obviously. Your ideal mirror would have a vast mass, in which case it could assimilate the force change, without engrossing any vitality. A reflection of limited mass will ingest some vitality in a crash that will change the vitality and along these lines the wavelength of the photon. There is no logical inconsistency here.
The energy is greater and producing a net gain of ATP in glycolysis of 3 ATP.
<h3>
What is glycolysis?</h3>
- The metabolic process known as glycolysis turns the sugar glucose (C6H12O6) into pyruvate (CH3COCO2H). The high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide are created using the free energy released during this process (NADH).
- A series of ten enzyme-catalyzed processes make up glycolysis. binding energy of carbs is captured. Retention of ATP One metabolic route that doesn't require oxygen is glycolysis (In anaerobic conditions pyruvate is converted to lactic acid)
- Glycolysis occurs frequently in various species, which suggests that it is an old metabolic route. In fact, the events that make up glycolysis and its companion process, the pentose phosphate pathway, take place in the oxygen-free environment of the Archean oceans, also in the absence of enzymes, and are catalyzed by metal.
To learn more about glycolysis with the given link
brainly.com/question/10554097
#SPJ4
Answer:
OH, H2O2 and O−2
Explanation:
Reactive oxygen species (ROS) can be defined as highly reactive chemical compounds formed from molecular oxygen (O2). ROS are generated as a normal product of cellular metabolism, and also as a response to different environmental/internal cellular stimuli (e.g., cytokines, xenobiotics, pathogenic invasion). For example, hydroxyl radicals (·OH) are a type of ROS generated in the mitochondria which are capable of inducing oxidative stress in different cells and also trigger chronic inflammation. Moreover, hydrogen peroxide (H2O2) molecules represent another type of ROS which are produced during the stereoselective deamination of amino acids, i.e., the building blocks of proteins. These molecules (H2O2) exhibit toxic effects on the cell (e.g., DNA damage). Finally, singlet oxygen (1O2) is an excited state of molecular oxygen (O2) that is generated during photosynthesis in the photosystem II (PSII) of chloroplasts.
C. The nucleus does not exit within a prokaryotic cell
Answer:
B (active transport using ATP)
Explanation:
Movement of substances normally occur in the direction of concentration gradient/difference i.e. the difference in concentration of a substance across a membrane. Letting molecules diffuse or pass down their concentration gradient does not require energy but pumping those molecules against gradient requires energy in form of Adenosine triphosphate (ATP). This process is called Active transport.
In order to perform certain cellular processes, cells need to move substances from their surroundings into the cell across their cell membrane. Moving this substances against the concentration gradient between the cell membrane and its extracellular fluid requires energy (ATP).
An example is the sodium-pottasium pump employed by animal cells in which they expend energy to move K+ molecules into the cell and Na+ molecules outside the cell against the concentration gradient of their cell membrane and extracellular solution.