Answer:
As given, measure of angle 4 is 70°
Then what would be the measure of ∠8.
Following cases comes into consideration
1. If ∠4 and ∠8 are supplementary angles i.e lie on same side of Transversal, then
∠4 + ∠8=180°
⇒70°+∠8=180° [∠4=70°]
⇒∠8=180°-70°
⇒∠8=110°
<u>2nd possibility</u>
But if these two angles i.e ∠4 and ∠8 forms a linear pair.Then
⇒ ∠4 + ∠8=180°
⇒70°+∠8=180° [∠4=70°]
⇒∠8=180°-70°
⇒∠8=110°
<u>3rd possibility</u>
If ∠4 and ∠8 are alternate exterior angles.
then, ∠4 = ∠8=70°
<u>4th possibility</u>
If If ∠4 and ∠8 are corresponding angles.
then, ∠4 = ∠8=70°
Out of four options given Option A[ 110° because ∠4 and ∠8 are supplementary angles], Option B[70° because ∠4 and ∠8 are alternate exterior angles.] and Option D[70° because ∠4 and ∠8 are corresponding angles.] are Correct.
Answer:
2
Step-by-step explanation:
10a² : 5a² = 10 : 5 = 2
Answer:
B
Step-by-step explanation:
I would say B because if only 30 people said water and there is 65 that said something then it would almost be half of what you started with
The similar circles P and Q can be made equal by dilation and translation
- The horizontal distance between the center of circles P and Q is 11.70 units
- The scale factor of dilation from circle P to Q is 2.5
<h3>The horizontal distance between their centers?</h3>
From the figure, we have the centers to be:
P = (-5,4)
Q = (6,8)
The distance is then calculated using:
d = √(x2 - x1)^2 + (y2 - y1)^2
So, we have:
d = √(6 + 5)^2 + (8 - 4)^2
Evaluate the sum
d = √137
Evaluate the root
d = 11.70
Hence, the horizontal distance between the center of circles P and Q is 11.70 units
<h3>The scale factor of dilation from circle P to Q</h3>
We have their radius to be:
P = 2
Q = 5
Divide the radius of Q by P to determine the scale factor (k)
k = Q/P
k = 5/2
k = 2.5
Hence, the scale factor of dilation from circle P to Q is 2.5
Read more about dilation at:
brainly.com/question/3457976