Answer:
D
Step-by-step explanation:
the n th term ( explicit formula ) of a geometric sequence is
•
= 

where r is the common ratio and
the first term
here r =
=
=
and
= 64, hence
= 64
→ D
Area of a triangle= bh/2b=4in h=8in8x4/2=16in
there are 4 triangles
4x16=64
area of a rectangle=bh
4x4=16
64+16=80in^2
Answer:
a2 – b2 = (a – b)(a + b)
(a + b)2 = a2 + 2ab + b2
a2 + b2 = (a + b)2 – 2ab
(a – b)2 = a2 – 2ab + b2
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
(a – b – c)2 = a2 + b2 + c2 – 2ab + 2bc – 2ca
(a + b)3 = a3 + 3a2b + 3ab2 + b3 ; (a + b)3 = a3 + b3 + 3ab(a + b)
(a – b)3 = a3 – 3a2b + 3ab2 – b3 = a3 – b3 – 3ab(a – b)
a3 – b3 = (a – b)(a2 + ab + b2)
a3 + b3 = (a + b)(a2 – ab + b2)
(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4
(a – b)4 = a4 – 4a3b + 6a2b2 – 4ab3 + b4
a4 – b4 = (a – b)(a + b)(a2 + b2)
a5 – b5 = (a – b)(a4 + a3b + a2b2 + ab3 + b4
Answer: second option y = 2(x + 7/2)^2 + 1/2
Explanation:
1) given:
y = (x + 3)^2 + (x + 4)^2
2) expand the binomials:
y = x^2 + 6x + 9 + x^2 + 8x + 16
3) add like terms:
y = 2x^2 + 14x + 25
4) take common factor 2 of the first two terms:
y = 2 (x^2 + 7x) + 25
5) complete squares for x^2 + 7x
x^2 + 7x = [x +(7/2)x ]^2 - 49/4
6) substitue x^2 + 7x = (x + 7/2)^2 - 49/4 in the equation for y:
y = 2 [ (x + 7/2)^2 - 49/4] + 25
7) take -49/4 out of the square brackets.
y = 2 (x + 7/2)^2 - 49/2 + 25
8) add like terms:
y = 2(x + 7/2)^2 + 1/2
And that is the vertex for of the given expression.