Answer:

Step-by-step explanation:



Reducing 3 from numerator and denominator,

The number of permutations of picking 4 pens from the box is 30.
There are six different unique colored pens in a box.
We have to select four pens from the different unique colored pens.
We have to find in how many different orders the four pens can be selected.
<h3>What is a permutation?</h3>
A permutation is the number of different arrangements of a set of items in a particular definite order.
The formula used for permutation of n items for r selection is:

Where n! = n(n-1)(n-2)(n-3)..........1 and r! = r(r-1)(r-2)(r-3)........1
We have,
Number of colored pens = 6
n = 6.
Number of pens to be selected = 4
r = 4
Applying the permutation formula.
We get,
= 
= 6! / 4!
=(6x5x4x3x2x1 ) / ( 4x3x2x1)
= 6x5
=30
Thus the number of permutations of picking 4 pens from a total of 6 unique colored pens in the box is 30.
Learn more about permutation here:
brainly.com/question/14767366
#SPJ1
19/45=0.422222222........
Therefore rounded to the nearest thousandth his batting average is 0.422
It looks like the ODE is

with the initial condition of
.
Rewrite the right side in terms of the unit step function,

In this case, we have

The Laplace transform of the step function is easy to compute:

So, taking the Laplace transform of both sides of the ODE, we get

Solve for
:

We can split the first term into partial fractions:

If
, then
.
If
, then
.


Take the inverse transform of both sides, recalling that

where
is the Laplace transform of the function
. We have


We then end up with
