Answer:
(x - 7)² + (y - 4)² = 49
Step-by-step explanation:
Given
Equation: x² + y² = 49
Required:
New Equation when translated 7 units right and 4 units up
Taking it one step at a time.
When the equation is translated 7 units right, this implies a negative unit along the x axis.
The equation becomes
(x - 7)² + y² = 49
When the equation is translated 4 units up, this implies a negative unit along the y axis.
(x - 7)² + (y - 4)² = 49
The expression can be further simplified but it's best left in the form of
(x - 7)² + (y - 4)² = 49
Answer:
6 gallons
Step-by-step explanation:
1) add 15 and 19 to get 34
2) then add 34 and 14 to get 48
3) then divide 48 by 8 to get 6
I use the sin rule to find the area
A=(1/2)a*b*sin(∡ab)
1) A=(1/2)*(AB)*(BC)*sin(∡B)
sin(∡B)=[2*A]/[(AB)*(BC)]
we know that
A=5√3
BC=4
AB=5
then
sin(∡B)=[2*5√3]/[(5)*(4)]=10√3/20=√3/2
(∡B)=arc sin (√3/2)= 60°
now i use the the Law of Cosines
c2 = a2 + b2 − 2ab cos(C)
AC²=AB²+BC²-2AB*BC*cos (∡B)
AC²=5²+4²-2*(5)*(4)*cos (60)----------- > 25+16-40*(1/2)=21
AC=√21= 4.58 cms
the answer part 1) is 4.58 cms
2) we know that
a/sinA=b/sin B=c/sinC
and
∡K=α
∡M=β
ME=b
then
b/sin(α)=KE/sin(β)=KM/sin(180-(α+β))
KE=b*sin(β)/sin(α)
A=(1/2)*(ME)*(KE)*sin(180-(α+β))
sin(180-(α+β))=sin(α+β)
A=(1/2)*(b)*(b*sin(β)/sin(α))*sin(α+β)=[(1/2)*b²*sin(β)/sin(α)]*sin(α+β)
A=[(1/2)*b²*sin(β)/sin(α)]*sin(α+β)
KE/sin(β)=KM/sin(180-(α+β))
KM=(KE/sin(β))*sin(180-(α+β))--------- > KM=(KE/sin(β))*sin(α+β)
the answers part 2) areside KE=b*sin(β)/sin(α)side KM=(KE/sin(β))*sin(α+β)Area A=[(1/2)*b²*sin(β)/sin(α)]*sin(α+β)
Answer:
(0, -6)
Step-by-step explanation:
Given the following systems of linear equations;
3x - 2y = 12 ...... equation 1
16x - 4y = 24 ........ equation 2
We would solve for the solution using the elimination method;
Multiplying eqn 1 by 2, we have;
2 * (3x - 2y = 12)
6x - 4y = 24
16x - 4y = 24
Subtracting the two equations, we have;
(6x - 16x) + (-4y -[-4y]) = (24 - 24)
-10x - 0 = 0
-10x = 0
x = -0/10 = 0
Next, we would find the value of y;
3x - 2y = 12
3(0) - 2y = 12
0 - 2y = 12
-2y = 12
y = -12/2
y = -6
Check:
3x - 2y = 12
3(0) - 2(-6) = 12
0 - (-12) = 12
12 = 12
Note: the options provided for this questions are incorrect or inappropriate.
Answer:
B. Age of student
D. Time taken to run 1 mile
Step-by-step explanation:
From the list of given options, only B and D satisfy the required condition.
One unique determinant of continuous data is that; they are measured and not counted.
Now, let's categorize option A to D into two
1. Counted data
2. Measured data
Options that fall into the category of measured data are said to be continuous data.
A. Concert attendance; The number of people in a concert is counted
B. The age of a student is measured (in years)
C. Number of pens in a box is counted
D. Time taken to run 1 mile is measured (in units like seconds, minutes, hours, etc...)
In summary; we have
Counted
A. Concert Attendance
C. Number of pens in a box
Measured
B. Age of a student
D. Time taken to run 1 mile
Hence, the continuous data are Age of a student and Time taken to run 1 mile