.15 is your answer, seeing as .15 is equivalent to 15%
Hey can you take another pic

now, for a rational expression, the domain, or "values that x can safely take", applies to the denominator NOT becoming 0, because if the denominator is 0, then the rational turns to
undefined.
now, what value of "x" makes this denominator turn to 0, let's check by setting it to 0 then.
![\bf 2-x^{12}=0\implies 2=x^{12}\implies \pm\sqrt[12]{2}=x\\\\ -------------------------------\\\\ \cfrac{x^2-9}{2-x^{12}}\qquad \boxed{x=\pm \sqrt[12]{2}}\qquad \cfrac{x^2-9}{2-(\pm\sqrt[12]{2})^{12}}\implies \cfrac{x^2-9}{2-\boxed{2}}\implies \stackrel{und efined}{\cfrac{x^2-9}{0}}](https://tex.z-dn.net/?f=%5Cbf%202-x%5E%7B12%7D%3D0%5Cimplies%202%3Dx%5E%7B12%7D%5Cimplies%20%5Cpm%5Csqrt%5B12%5D%7B2%7D%3Dx%5C%5C%5C%5C%0A-------------------------------%5C%5C%5C%5C%0A%5Ccfrac%7Bx%5E2-9%7D%7B2-x%5E%7B12%7D%7D%5Cqquad%20%5Cboxed%7Bx%3D%5Cpm%20%5Csqrt%5B12%5D%7B2%7D%7D%5Cqquad%20%5Ccfrac%7Bx%5E2-9%7D%7B2-%28%5Cpm%5Csqrt%5B12%5D%7B2%7D%29%5E%7B12%7D%7D%5Cimplies%20%5Ccfrac%7Bx%5E2-9%7D%7B2-%5Cboxed%7B2%7D%7D%5Cimplies%20%5Cstackrel%7Bund%20efined%7D%7B%5Ccfrac%7Bx%5E2-9%7D%7B0%7D%7D)
so, the domain is all real numbers EXCEPT that one.
Answer: yeah it makes sense is that 2 to the power of nothing
Step-by-step explanation: