Answer:
10 candy bars
Step-by-step explanation:
Since each of his friends needs a candy bar, you need to multiply 6 and 1 ⅔ together.
First, convert 1 ⅔ into an improper fraction: this gives us ⁵⁄₃.
Next, multiply ⁶⁄₁ and ⁵⁄₃ together. To do this, you can visualize 6 as ⁶⁄₁ (which is the same thing). Now you have ⁶⁄₁ x ⁵⁄₃.
<u>Simplify:</u>
The 6 in the numerator and the 3 in the denominator cancel out. This gives us ²⁄₁ x ⁵⁄₁ , which is 2 x 5.
2 x 5 = 10
Answer:
7−2x
Step-by-step explanation:
1 Collect like terms.
(4+3)+(-7x+5x)
(4+3)+(−7x+5x)
2 Simplify.
7-2x
7−2x
The <em>xy</em>-plane has a normal vector of 〈0, 0, 1〉, and any plane parallel to it will have the same normal vector.
Then the equation of the plane through (6, 3, 2) that is parallel to the <em>xy</em>-plane has equation
〈<em>x</em> - 6, <em>y</em> - 3, <em>z</em> - 2〉 • 〈0, 0, 1〉 = 0
==> <em>z</em> - 2 = 0
==> <em>z</em> = 2
Answer:
b. (10,10,0)
Step-by-step explanation:
r+v can be evaluated if the vectors/matrices have the same dimensions.
These do. They are both 1 by 3 vectors.
Just add first to first in each.
Just add second to second in each.
Just add third to third in each.
Example:
(5,-5,6)+(1,2,3)
=(5+1,-5+2,6+3)
=(6,-3,9)
Done!
In general, (a,b,c)+(r,s,t)=(a+r,b+s,c+t).
r+v
=(7,3,9)+(3,7,-9)
=(7+3,3+7,9+-9)
=(10,10,0)
Done!