Answer:
5. All of the above.
Explanation:
Energy can be extracted from water by gravitational force as done in hydroelectric plants, temperature gradients that creates natural convection processes, the mechanical variations of ocean currents and surface waves, and by nuclear fussion.
Answer:
- The first picture attached is the diagram that accompanies the question.
- The<u> second picture attached</u> is the diagram with the answer.
Explanation:
In the box on the left there are 8 Cl⁻ ions and 8 Na⁺ ions.
The dissociaton equation for NaCl(aq) is:
- NaCl (aq) → Na⁺ (aq) + Cl⁻(aq)
The dissociation equation for CaCl₂ (aq) is:
- CaCl₂ (aq) → Ca²⁺ (aq) + 2Cl⁻(aq)
A 0.10MCaCl₂ (aq) solution will have half the number of CaCl₂ units as the number of NaCl units in a 0.20M NaCl (aq) solution.
Thus, while the 0.20M NaCl (aq) solution yields 8 ions of Na⁺ and 8 ions of Cl⁻, the 0.10MCaCl₂ (aq) solution will yield 4 ions of Ca²⁺ (half because the concentration if half) and 8 ions of Cl⁻ (first take half and then multiply by 2 because the dissociation reaction).
Thus, your drawing must show 4 dots representing Ca²⁺ ions and 8 dots representing Cl⁻ ions in the box on the right.
Answer:
Number of delocalized electrons
Explanation:
Magnesium has more delocalized electrons compared to sodium and this accounts for the higher melting point.
- When magnesium atoms comes together to form a metallic bonds, they have more network of delocalized electrons.
- There is more pull for the localized electrons due to the nuclear charge on the nucleus.
- This strong intermolecular metallic bond increases the melting point of magnesium.
Answer:
The solubility curve helps us to predict which substance will crystallize out first from a solution containing two or more solutes. The solubility curve helps us to compare the solubilities of different substances at the same temperature.
Answer:c. oxygen,light,and glucose combine to produce high energy molecules
Explanation: