Answer:
Coefficients
Explanation:
Chemical equations are first written as a skeleton equation, which includes how many atoms each element and compound has. Skeleton equations are not 'balanced' because the number of atoms of each element on the left side (reactants) is not equal to the right side (products).
To balance a chemical equation, you can write coefficients in front of single elements and compounds. The coefficient multiplies with each single element and with each element in the compound.
For example, in this skeleton equation:
H₂ + Cl₂ => HCl
Reactants: Products:
2 hydrogen 1 hydrogen
2 chlorine 1 chlorine
Write the coefficient 2 in the products.
H₂ + Cl₂ => 2HCl
Now both reactant and product sides have 2 chlorine and 2 hydrogen, so the equation is balanced.
To allow for equations and problems in chemistry to be as precise as possible. When experiments are conducted, and even if the number is the slightest bit off, the problem or experiment could be impacted very negatively. It allows for complete accuracy to ensure nothing goes wrong, since chemistry is very touchy and risky when dealing with extremely unsafe elements.
The reaction between hydrogen (H2) and fluorine (F2) is given below,
H2 + F2 ---> 2HF
One mole of both hydrogen and fluorine yields to 2 moles of hydrogen fluoride. This can also be expressed as, 2 grams of hydrogen and 38 grams of fluorine will form 40 grams of hydrogen fluoride. From the given, only 20 grams of HF is formed with 19 g of it being fluorine. Thus, the percentage fluorine of the compound formed is 95%.
Osmotic pressure is the pressure that would have to be applied to a pure solvent to prevent it from passing into a given solution by osmosis.
That can be mathematical computed from the expression:
Osmotic pressure=C×R×T
Where,
C= Concentration
R=Gas constant
T=Temperature
Concentration=Number of moles of solute/Volume(L)
=0.005*1000/100
=0.05
R= 0.08206 atm L/mol K
T=25+273
=298
Osmotic pressure= 0.05×0.08206×298
=1.2 atm
= k
<u>Explanation:</u>
The relation between volume, V of gas and Temperature, T of a gas is related by Charles Law.
This law states that the volume of a given amount of gas held at a constant pressure is directly proportional to the Kelvin temperature
Thus,
= k
where k is a constant
Therefore,
=
=
...
This shows, as the volume of a gas goes up, the temperature also goes up and vice-versa.