Answer: Weight only.
Explanation: Mass is a measure of the amount of matter in an object. Weight is a measure of the gravitational force exerted on the material in a gravitational field. Mass and weight are proportional to each other, with the acceleration due to gravity as the proportionality constant.
If a rock is transported from the moon to the earth, the mass is constant for the object but the weight will depends on the locations of the object. The gravitational acceleration would change because the radius and mass of the Moon is different from the Earth.
Thus, the object (rock) has <em>mass, m</em> both on the surface of the Earth and the surface of the Moon; but it will <em>weight</em> much less on the surface of the Moon as the Moon's surface gravity is 1/6 of the Earth.
Answer:
A
Explanation:
Force of gravity can be expressed as:
F = GMM/R^2
Where
F = gravitational force
M = mass
R = distance
Also, W = mg
From the above equation, we can deduce that force of gravity actually depends on mass and not volume.
The correct answer is therefore A.
Had twice as much mass
Therefore, the force of gravity pulls down on your school with a total force of 400,000 newtons. The force of gravity pulling down on your school would be exactly twice as much if your school Had twice as much mass
Nothing it nor breatheable you could die and it cold
Answer:
120 m
Explanation:
Given:
wavelength 'λ' = 2.4m
pulse width 'τ'= 100T ('T' is the time of one oscillation)
The below inequality express the range of distances to an object that radar can detect
τc/2 < x < Tc/2 ---->eq(1)
Where, τc/2 is the shortest distance
First we'll calculate Frequency 'f' in order to determine time of one oscillation 'T'
f = c/λ (c= speed of light i.e 3 x
m/s)
f= 3 x
/ 2.4
f=1.25 x
hz.
As, T= 1/f
time of one oscillation T= 1/1.25 x
T= 8 x
s
It was given that pulse width 'τ'= 100T
τ= 100 x 8 x
=> 800 x
s
From eq(1), we can conclude that the shortest distance to an object that this radar can detect:
= τc/2 => (800 x
x 3 x
)/2
=120m
Answer:
10.84 m/s2 radially inward
Explanation:
As the car is traveling an a constant tangential speed of 80.8 m/s, the total acceleration only consists of the centripetal acceleration and no linear acceleration. The formula for centripetal acceleration with respect to tangential speed v = 80.8 m/s and radius r =602 m is

b) The direction of this centripetal acceleration is radially inward