Answer:
Accuracy
Explanation:
I think accuracy is more important. When it comes to vital organs in the body, the exactness of getting the measurement is paramount. Accuracy deals with getting very close, almost exact you may say, to a known standard. Precision on the other hand, deals with how easy a measurement can be retaken, reproduced or remade, irrespective of how far or close they are from the accepted norm.
From this, we can agree that precision neglects the most important factor, closeness or say, exactness. Precision isn't bothered by it. And while that can be excused in a few instances, it certainly can not be permitted when it comes to life, or organs of the body
<span>d.rotating counterclockwise and slowing down
This is a matter of understanding the notation and conventions of angular rotations. Positive rotations are counter clockwise and negative rotations are clockwise. An easy way to remember this is the "right hand rule". Make a closed fist with your right hand and have the thumb sticking outwards. If you orient your thumb such that it's pointing in the direction of the positive value along the axis, your fingers will be curled in the positive rotational direction. So in the described scenario, the sphere is rotating in the positive direction (counter clockwise) and decelerating due to the negative angular acceleration. That immediately indicates that options "a", "b", and "e" are wrong since they mention the sphere going clockwise at the beginning. Of the two remaining options "c" and "d", we can discard option "c" since it has the rotation speeding up, and that leaves us with option "d" where the sphere is rotating counter clockwise and slowing down.</span>
Answer:
<h2>a) Time elapsed before the bullet hits the ground is 0.553 seconds.</h2><h2>b)
The bullet travels horizontally 110.6 m</h2>
Explanation:
a) Consider the vertical motion of bullet
We have equation of motion s = ut + 0.5 at²
Initial velocity, u = 0 m/s
Acceleration, a = 9.81 m/s²
Displacement, s = 1.5 m
Substituting
s = ut + 0.5 at²
1.5 = 0 x t + 0.5 x 9.81 xt²
t = 0.553 s
Time elapsed before the bullet hits the ground is 0.553 seconds.
b) Consider the horizontal motion of bullet
We have equation of motion s = ut + 0.5 at²
Initial velocity, u = 200 m/s
Acceleration, a = 0 m/s²
Time, t = 0.553 s
Substituting
s = ut + 0.5 at²
s = 200 x 0.553 + 0.5 x 0 x 0.553²
s = 110.6 m
The bullet travels horizontally 110.6 m
Answer:
480
Explanation:
resistance equals to potential difference divide by electric current
120÷0.25
=480