If 6 is placed at the right end of AB, so the number is AB6.
the value of the three-digit number formed is 294 more than AB, means that if AB6 - 294 = AB <span>
</span>AB 6
- 2 9 4
AB <span>
</span>6 - 4 = B = 2 <span>
</span>If B = 2, then the tens digit is 2 - 9 (which can't be) so 12 - 9 = 3 = A <span>
</span>A = 3, and B = 2 <span>
</span><span>check: 326 - 294 = 32</span>
Answer:
Step-by-step explanation:
tan Θ + tan 2Θ + √3 tan Θ tan 2Θ = √3
tan Θ + tan 2Θ = √3 - √3 tan Θ tan 2Θ
tan Θ + tan 2Θ = √3 ( 1 - tan Θ tan 2Θ)
(tan Θ + tan 2Θ) / (1 - tanΘ tan 2Θ) = √3
tan(Θ + 2Θ) = √3
tan 3Θ = tan (
) we know tan Θ = tan α; Θ = nΠ + α, n belongs to z
3Θ = nΠ + Π/3
Θ = nπ/3 + Π/9 for all n in Z
#8 you do 360= 112+136+x... then you solve for x. X=112. Now you divide this by two since it is an inscribed angle. For #9 I have this very simplified work in the picture. Sorry I did not do #10