Answer:
a) attractiva, b) dF =
, c) F =
, d) F = -1.09 N
Explanation:
a) q1 is negative and the charge of the bar is positive therefore the force is attractive
b) For this exercise we use Coulomb's law, where we assume a card dQ₂ at a distance x
dF =
where k is a constant, Q₁ the charge at the origin, x the distance
c) To find the total force we must integrate from the beginning of the bar at x = d to the end point of the bar x = d + L
∫ dF =
as they indicate that the load on the bar is uniformly distributed, we use the concept of linear density
λ = dQ₂ / dx
DQ₂ = λ dx
we substitute
F = 
F = k Q1 λ (
)
we evaluate the integral
F = k Q₁ λ
F = k Q₁ λ 
we change the linear density by its value
λ = Q2 / L
F =
d) we calculate the magnitude of F
F =9 10⁹ (-4.2 10⁻⁶)
F = -1.09 N
the sign indicates that the force is attractive
Components connected in series are connected along a single path, so the same current flows through all of the components. If the light bulbs are connected in parallel, the currents through the light bulbs combine to form the current in the battery, while the voltage drop is across each bulb and they all glow.
the answer is the speed of blue ball after collision is 2.6v
Death would happen, hope this helped