1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alina1380 [7]
3 years ago
8

PLEASE HELP! 30 POINTS! What are the zeros of the function?

Mathematics
1 answer:
marusya05 [52]3 years ago
4 0
Solve the equation
f(t) = 0
So we have:
{t}^{2}  - 13t + 36
Factor, 2 numbers of which the sum is -13 and multiplying gives 36, these two are -4 and -9
So solve:
(x - 4)(x - 9) = 0
The solutions:
4 and 9


You might be interested in
Which term is a perfect square of the root 3x4?
mafiozo [28]

Answer: 9x16

Step-by-step explanation: The correct option is perfect square of 3x4 is 9x16.

3 0
3 years ago
Read 2 more answers
20 POINTS!!!
notka56 [123]

\dfrac{2}{\sqrt3\cos x+\sin x}=\sec\left(\dfrac{\pi}{6}-x\right)\\\\\dfrac{2}{\sqrt3\cos x+\sin x}=\dfrac{1}{\cos\left(\dfrac{\pi}{6}-x\right)}\ \ \ \ \ (*)\\----------------\\\\\cos\left(\dfrac{\pi}{6}-x\right)\ \ \ \ |\text{use}\ \cos(x-y)=\cos x\cos y+\sin x\sin y\\\\=\cos\dfrac{\pi}{6}\cos x+\sin\dfrac{\pi}{6}\sin x=\dfrac{\sqrt3}{2}\cos x+\dfrac{1}{2}\sin x=\dfrac{\sqrt3\cos x+\sin x}{2}\\------------------------------

(*)\\R_s=\sec\left(\dfrac{\pi}{6}-x\right)=\dfrac{1}{\cos\left(\dfrac{\pi}{6}-x\right)}=\dfrac{1}{\dfrac{\sqrt3\cos x+\sin x}{2}}\\\\=\dfrac{2}{\sqrt3\cos x+\sin x}=L_s

6 0
3 years ago
Read 2 more answers
Tell me numbersin order
Paul [167]

Part 1:-

  • cost to park of a day is= $25+$43+$61+$79 =$208

  • and the hourly rate to a paddle boat =208÷24=$8.6 per hour

______________________

<h3>What will Lin pay if she rents a paddleboat for 3.5 hours and splits the total cost with a friend? Completethe explanation.</h3>

The total cost to rent the boat will be

<u>3.5</u> hours x $<u> </u><u>12</u> per hour + $ <u>5</u> =$<u>47</u>

<u>i</u><u>f</u><u> </u><u>she </u><u>spilt </u><u>cost </u><u>with </u><u>a </u><u>friend</u><u> </u><u>,</u><u>they </u><u>will </u><u>each </u><u>pay$</u><u>4</u><u>7</u><u> </u><u>÷</u><u> </u><u>2</u><u>=</u><u> </u><u>$</u><u> </u><u>2</u><u>3</u><u>.</u><u>5</u>

7 0
2 years ago
PLEASE SOMEONE GOOD AT MATH HELP IM HAVING A MENTAL BREAKDOWN
Alenkinab [10]
Find the hight and the base that might help
5 0
3 years ago
The table shows a company’s profit based on the number of pounds of food produced.
Bingel [31]

Answer:

$5,300

Step-by-step explanation:

Formulae used,

a=\dfrac{(\sum x^2y\sum xx)-(\sum xy\sum xx^2)}{(\sum xx\sum x^2x^2)-({\sum xx^2)}^2}

b=\dfrac{(\sum xy\sum x^2x^2)-(\sum x^2y\sum xx^2)}{(\sum xx\sum x^2x^2)-({\sum xx^2)}^2}

c=\dfrac{\sum y}{n}-b\frac{\sum x}{n}-a\frac{\sum x^2}{n}

Where,

\sum xx=\sum x^2-\dfrac{(\sum x)^2}{n}

\sum xy=\sum xy-\dfrac{\sum x\sum y}{n}

\sum xx^2=\sum x^3-\dfrac{\sum x\sum x^2}{n}

\sum x^2y=\sum x^2y-\dfrac{\sum x^2\sum y}{n}

\sum x^2x^2=\sum x^4-\dfrac{(\sum x^2)^2}{n}

Putting the values from the table, we get the best fit line as,

y= -0.0817x^2 + 102.24x - 20421

As we want to calculate the profit at 350 pounds, so putting x=350, we get

y= -0.0817(350)^2 + 102.24(350) - 20421=\$5354.75


5 0
3 years ago
Read 2 more answers
Other questions:
  • Scientific<br> Express this number in scientific notation.<br> 52 thousandths
    13·1 answer
  • Let f (x)= x + 18 − 3 x − 15 Choose the correct interval form for the DOMAIN of f and then enter the values for the endpoint(s)
    15·1 answer
  • What is the volume of a rectangular prism? 9 in by 3 in by 2 in
    13·2 answers
  • HELP I NEED HELP ASAP
    14·2 answers
  • Solve for the value of m. <br>​
    13·2 answers
  • Can someone pls help me on this
    13·2 answers
  • 70,440,666 rounded to the nearest million
    9·1 answer
  • Help I’m unsure how to complete this
    7·1 answer
  • 4−(−8)= please help i need it now
    15·2 answers
  • Does someone mind helping me with this problem? Thank you!
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!