1. Add y to each side
That will get you 3x=8+y
2. Subtract 8 on each side
That will get you y=3x-8
The area of the shaded region is 3x^2 + 6x
<h3>How to determine the area of the shaded region?</h3>
The given parameters are:
- Top side of the shaded rectangle = 2x + 7.
- Left side of the shaded rectangle = 2x.
- Top side of the unshaded rectangle = x + 8.
- Left side of the unshaded rectangle = x.
The area of the shaded region is calculated as:
Shaded region area = (Top side of the shaded rectangle * Left side of the shaded rectangle) - (Top side of the unshaded rectangle * Left side of the unshaded rectangle)
Substitute the known values in the above equation
Shaded region area = (2x + 7) * (2x) - (x + 8) * (x)
Evaluate the products
Shaded region area = (4x^2 + 14x) - (x^2 + 8x)
Open the bracket
Shaded region area = 4x^2 + 14x - x^2 - 8x
Collect the like terms
Shaded region area = 4x^2 - x^2 + 14x - 8x
Evaluate the like terms
Shaded region area = 3x^2 + 6x
Hence, the area of the shaded region is 3x^2 + 6x
Read more about areas at:
brainly.com/question/25292087
#SPJ1
Answer:
B:942$
Step-by-step explanation:
(pi*20^2)/2 is approximately 628.32
628.32*1.5=942.48
For the first one the answer is y=-1x+6 which means x=-1 and y=6