Answer:
<h3>
f(x) = 5x² + 2x</h3><h3>
g(x) = 6x - 6</h3>
Step-by-step explanation:
![\dfrac{5x^3-8x^2-4x}{6x^2-18x+12}\\\\6(x^2-3x+2)\ne0\ \iff\ x=\frac{3\pm\sqrt{9-8}}{2}\ne0\ \iff\ x\ne2\ \wedge\ x\ne1\\\\\\\dfrac{5x^3-8x^2-4x}{6x^2-18x+12}=\dfrac{x(5x^2-8x-4)}{6(x^2-3x+2)}=\dfrac{x(5x^2-10x+2x-4)}{6(x^2-2x-x+2)}=\\\\\\=\dfrac{x[5x(x-2)+2(x-2)]}{6[x(x-2)-(x-2)]} =\dfrac{x(x-2)(5x+2)}{6(x-2)(x-1)}=\dfrac{x(5x+2)}{6(x-1)}=\dfrac{5x^2+2x}{6x-6}\\\\\\f(x)=5x^2+2x\\\\g(x)=6x-6](https://tex.z-dn.net/?f=%5Cdfrac%7B5x%5E3-8x%5E2-4x%7D%7B6x%5E2-18x%2B12%7D%5C%5C%5C%5C6%28x%5E2-3x%2B2%29%5Cne0%5C%20%5Ciff%5C%20x%3D%5Cfrac%7B3%5Cpm%5Csqrt%7B9-8%7D%7D%7B2%7D%5Cne0%5C%20%5Ciff%5C%20x%5Cne2%5C%20%5Cwedge%5C%20x%5Cne1%5C%5C%5C%5C%5C%5C%5Cdfrac%7B5x%5E3-8x%5E2-4x%7D%7B6x%5E2-18x%2B12%7D%3D%5Cdfrac%7Bx%285x%5E2-8x-4%29%7D%7B6%28x%5E2-3x%2B2%29%7D%3D%5Cdfrac%7Bx%285x%5E2-10x%2B2x-4%29%7D%7B6%28x%5E2-2x-x%2B2%29%7D%3D%5C%5C%5C%5C%5C%5C%3D%5Cdfrac%7Bx%5B5x%28x-2%29%2B2%28x-2%29%5D%7D%7B6%5Bx%28x-2%29-%28x-2%29%5D%7D%20%3D%5Cdfrac%7Bx%28x-2%29%285x%2B2%29%7D%7B6%28x-2%29%28x-1%29%7D%3D%5Cdfrac%7Bx%285x%2B2%29%7D%7B6%28x-1%29%7D%3D%5Cdfrac%7B5x%5E2%2B2x%7D%7B6x-6%7D%5C%5C%5C%5C%5C%5Cf%28x%29%3D5x%5E2%2B2x%5C%5C%5C%5Cg%28x%29%3D6x-6)
Answer:
A.

Step-by-step explanation:

Answer:
-85.9 feet below sea level.
Step-by-step explanation:
Answer:
x=19, y=-5
Step-by-step explanation:
Add the equations in order to solve for the first variable. Plug this value into the other equations in order to solve for the remaining variables.
Point Form:
(19, -5)
Equation Form:
x=19, y=-5
Hope this helps.
Finding the
Lowest Common Denominator of:

Here's to find out how it was our LCD:

To find the fraction on the right side we had to multiply (and somewhat divide to get the answer)
So, therefore the Lowest Common Denominator of this question would most likely be:

Good Luck!