Step-by-step explanation:
In a direct proportion, the ratio between matching quantities stays the same if they are divided. (They form equivalent fractions). In an indirect (or inverse) proportion, as one quantity increases, the other decreases. In an inverse proportion, the product of the matching quantities stays the same.
you will do as you said yes yes i is fine with me but i’m going on the right now so bye bye u it was correct that
Answer:
3053.63
Step-by-step explanation:
Use the equation for sphere volume:
Plug the values in and get
≈ 3053.63
Note: exact value of pi used.
This is a problem you need to solve using logs. When you use logs you can "pull" the exponents down in front of the log to get a new equation that looks like this: 2x^3 + x^2 log 81 = 6x - 3 log 27. Now divide both sides by log 81 and 6x - 3 simultaneously to get (2x^3 + x^2)/(6x - 3) = (log 27)/(log 81). If you do the log math on the right side you get .75. Now multiply both sides by 6x-3 to get 2x^3+x^2 = .75(6x-3). If you distribute that out on the left side you'll get 2x^3+x^2=4.5x-2.25. Now move everything over to the left side and set the whole thing equal to 0: 2x^3+x^2-4.5x+2.25=0. When you solve for x, you are in essence factoring, so do this by grouping: x^2(2x+1)-2.25(2x+1). Now finally factor out the 2x+1 to get (2x+1)(x^2-2.25). You're not done yet though cuz you need to solve each of those for x: 2x+1=0, and x= -1/2; x^2=2.25, and x=+/- 1.5. So all the values for x here are -1/2, 1.5, and -1.5
The solution to the given differential equation is yp=−14xcos(2x)
The characteristic equation for this differential equation is:
P(s)=s2+4
The roots of the characteristic equation are:
s=±2i
Therefore, the homogeneous solution is:
yh=c1sin(2x)+c2cos(2x)
Notice that the forcing function has the same angular frequency as the homogeneous solution. In this case, we have resonance. The particular solution will have the form:
yp=Axsin(2x)+Bxcos(2x)
If you take the second derivative of the equation above for yp , and then substitute that result, y′′p , along with equation for yp above, into the left-hand side of the original differential equation, and then simultaneously solve for the values of A and B that make the left-hand side of the differential equation equal to the forcing function on the right-hand side, sin(2x) , you will find:
A=0
B=−14
Therefore,
yp=−14xcos(2x)
For more information about differential equation, visit
brainly.com/question/18760518