(A) We can solve the problem by using Ohm's law, which states:

where
V is the potential difference across the electrical device
I is the current through the device
R is its resistance
For the heater coil in the problem, we know

and

, therefore we can rearrange Ohm's law to find the current through the device:

(B) The resistance of a conductive wire depends on three factors. In fact, it is given by:

where

is the resistivity of the material of the wire
L is the length of the wire
A is the cross-sectional area of the wire
Basically, we see that the longer the wire, the larger its resistance; and the larger the section of the wire, the smaller its resistance.
Answer:-4
Explanation:because
10protone +10
14 electrone-14
5 neutrones0 the result will be
10-14=-4
Answer:
rhastuutse5r says he n and happiness of
Explanation:
UKDIAMOND is a great place to live and live and live in the world best friend tum jio hjaro and happiness of the day and the day of the day of the day of the day of the day of the day of 2nd century and the day of the day of