Answer:
Explanation:
Given
1 mole of perfect, monoatomic gas
initial Temperature


Work done in iso-thermal process
=initial pressure
=Final Pressure

Since it is a iso-thermal process therefore q=w
Therefore q=39.64 J
(b)if the gas expands by the same amount again isotherm-ally and irreversibly
work done is





Answer:

Explanation:
using the law of the conservation of energy:


where K is the spring constant, x is the spring compression, N is the normal force of the block,
is the coefficiet of kinetic friction and d is the distance.
Also, by laws of newton, N is calculated by:
N = mg
N = 3.35 kg * 9.81 m/s
N = 32.8635
So, Replacing values on the first equation, we get:

solving for
:

Answer:

Explanation:
From the question we are told that:
Crane Length 
Crane Mass 
Arm extension at lifting end 
Arm extension at counter weight end 
Load 
Generally the equation for Torque Balance is mathematically given by



Answer:
t = 1.58 s
Explanation:
given,
Speed of ranger, v = 56 km/h
v = 56 x 0.278 = 15.57 m/s
distance, d = 65 m
deceleration,a = 3 m/s²
reaction time = ?
using stopping distance formula


t is the reaction time

t = 1.58 s
hence, the reaction time of the ranger is equal to 1.58 s.
Answer:
52 mm/s (approximately)
Explanation:
Given:
Initial speed of the projectile is, 
Angle of projection is, 
Time taken to land on the hill is, 
In a projectile motion, there is acceleration only in the vertical direction which is equal to acceleration due to gravity acting vertically downward. There is no acceleration in the horizontal direction.
So, the velocity in the horizontal direction always remains the same.
The horizontal component of initial velocity is given as:

Now, the velocity in the vertical direction goes on decreasing and becomes 0 at the highest point of the trajectory. So, at the highest point, only horizontal component acts.
Therefore, the projectile's velocity at the highest point of its trajectory is equal to the horizontal component of initial velocity and thus is equal to 52 mm/s.