Explanation:
It is given that,
Mass of the football player, m = 92 kg
Velocity of player, v = 5 m/s
Time taken, t = 10 s
(1) We need to find the original kinetic energy of the player. It is given by :


k = 1150 J
In two significant figure, 
(2) We know that work done is equal to the change in kinetic energy. Work done per unit time is called power of the player. We need to find the average power required to stop him. So, his final velocity v = 0
i.e. 

P = 115 watts
In two significant figures, 
Hence, this is the required solution.
ball drops 45m under g=10m/s/s
45=1/2x10xt^2 ... application of kinematic equaion from rest
90/10=t^2
t=3
24.0 m in 3 secs => 8m/s no air resistance
None of the choices is correct.
If two runners take the same amount of time to run a mile,
they have the same average speed. But their velocities
are not the same unless both runners begin and end their
run at the same points.
Speed is (distance covered) divided by (time to cover the distance).
Velocity is not. It's something different.
'Velocity' is not just a bigger word for 'speed'.
The distance traveled by the hockey player is 0.025 m.
<h3>The principle of conservation of linear momentum;</h3>
- The principle of conservation of linear momentum states that, the total momentum of an isolated system is always conserved.
The final velocity of the hockey play is calculated by applying the principle of conservation of linear momentum;

The time taken for the puck to reach 15 m is calculated as follows;

The distance traveled by the hockey player at the calculated time is;

Learn more about conservation of linear momentum here: brainly.com/question/7538238