Answer:
<u>first graph:</u>
function.
Not one-one
onto
<u>Second graph:</u>
Function
one-one
not onto.
Step-by-step explanation:
We know that a graph is a function if any vertical line parallel to the y-axis should intersect the curve exactly once.
A graph is one-one if any horizontal line parallel to the x-axis or domain should intersect the curve atmost once.
and it is onto if any horizontal line parallel to the domain should intersect the curve atleast once.
Hence, from the <u>first graph:</u>
if we draw a vertical line parallel to the y-axis then it will intersect the graph exactly once. Hence, the graph is a function.
But it is not one-one since any horizontal line parallel to the domain will intersect the curve more than once.
But it is onto, since any horizontal line parallel to the domain will intersect the curve atleast once.
<u>Second graph</u>
It is a function since any vertical line parallel to the co-domain will intersect the curve exactly once.
It is not one-one since any horizontal line parallel to the x-axis does not intersect the graph atmost once.
It is not onto, since any horizontal line parallel to the domain will not intersect the curve atleast once.
Answer:
C = 1.5m+6
Step-by-step explanation:
The numbers of miles that we ride, we are charged 1.5 based on that. Hence, 1.5m. And we are anyway charged with 6 dollars, so plus 6.
Answer:
a) Objective function (minimize cost):

Restrictions
Proteins per pound: 
Vitamins per pound: 
Non-negative values: 
b) Attached
c) The optimum solution (minimum cost) is 0 pounds of ingredient A and 0.75 pounds of ingredient B. The cost is $0.15 per ration.
d) The optimum solution changes. The cost is now 0 pounds of ingredient A and 0.625 pounds of ingredient B. The cost is $0.125 per ration.
Step-by-step explanation:
a) The LP formulation for this problem is:
Objective function (minimize cost):

Restrictions
Proteins per pound: 
Vitamins per pound: 
Non-negative values: 
b) The feasible region is attached.
c) We have 3 corner points. In one of them lies the optimal solution.
Corner A=0 B=0.75

Corner A=0.5 B=0.5

Corner A=0.75 B=0

The optimum solution (minimum cost) is 0 pounds of ingredient A and 0.75 pounds of ingredient B. The cost is $0.15 per ration.
d) If the company requires only 5 units of vitamins per pound rather than 6, one of the restrictions change.
The feasible region changes two of its three corners:
Corner A=0 B=0.625

Corner A=0.583 B=0.333

Corner A=0.75 B=0

The optimum solution changes. The cost is now 0 pounds of ingredient A and 0.625 pounds of ingredient B. The cost is $0.125 per ration.
Answer:
the cost to price of each invitation is $3.725
Step-by-step explanation:
Given that
On party supplies she incurred $150
For decorations and various other supplies she incurred $75.50
The remaining amount i.e.
= $150 - $75.50
= $74.50
This amount would be incurred for the invitations
Now she invited 20 people
SO the cost to price of each invitation is
= $74.50 ÷ 20 people
= $3.725
Hence, the cost to price of each invitation is $3.725