419.26
9.75×1.5= 14.63
9.75×40=390
14.63×2= 29.26
390+29.26=419.26
Answer:
c² = 34
Explanation:
Pythagorean Theorem: a² + b² = c²
- Insert 3 and 5 into the equation
3² + 5² = c²
3² = 9
5² = 25
9 + 25 = 34
34 = c²
- PNW
Answer:
<em>The slope of the line is </em>
<em />
Step-by-step explanation:
<u>The Slope of a Line
</u>
Suppose we know a line passes through points A(x1,y1) and B(x2,y2). The slope can be calculated with the formula:

It's given the points (1,3) and (-2,2). Let's calculate the slope:

Calculating:


The slope of the line is 
The x-intercept of a function is basically it's roots. So when you factor out the function f(x) = x^2 - 16x + 64 you get
(x-8)(x-8)
x = 8
So x-int. is (0,8) or x = 8
i)On z, define a∗b=a−b
here aϵz
+
and bϵz
+
i.e.,a and b are positive integers
Let a=2,b=5⇒2∗5=2−5=−3
But −3 is not a positive integer
i.e., −3∈
/
z
+
hence,∗ is not a binary operation.
ii)On Q,define a∗b=ab−1
Check commutative
∗ is commutative if,a∗b=b∗a
a∗b=ab+1;a∗b=ab+1=ab+1
Since a∗b=b∗aforalla,bϵQ
∗ is commutative.
Check associative
∗ is associative if (a∗b)∗c=a∗(b∗c)
(a∗b)∗c=(ab+1)∗c=(ab+1)c+1=abc+c+1
a∗(b∗c)=a∗(bc+1)=a(bc+1)+1=abc+a+1
Since (a∗b)∗c
=a∗(b∗c)
∗ is not an associative binary operation.
iii)On Q,define a∗b=
2
ab
Check commutative
∗ is commutative is a∗b=b∗a
a∗b=
2
ab
b∗a=
2
ba
=
2
ab
a∗b=b∗a∀a,bϵQ
∗ is commutativve.
Check associative
∗ is associative if (a∗b)∗c=a∗(b∗c)
(a∗b)∗c=
2
(
2
ab
)∗c
=
4
abc
(a∗b)∗c=a∗(b∗c)=
2
a×
2
bc
=
4
abc
Since (a∗b)∗c=a∗(b∗c)∀a,b,cϵQ
∗ is an associative binary operation.
iv)On z
+
, define if a∗b=b∗a
a∗b=2
ab
b∗a=2
ba
=2
ab
Since a∗b=b∗a∀a,b,cϵz
+
∗ is commutative.
Check associative.
∗ is associative if $$
(a∗b)∗c=a∗(b∗c)
(a∗b)∗c=(2
ab
)
∗
c=2
2
ab
c
a∗(b∗c)=a∗(2
ab
)=2
a2
bc
Since (a∗b)∗c
=a∗(b∗c)
∗ is not an associative binary operation.
v)On z
+
define a∗b=a
b
a∗b=a
b
,b∗a=b
a
⇒a∗b
=b∗a
∗ is not commutative.
Check associative
∗ is associative if $$
(a∗b)∗c=a∗(b∗c)
(a∗b)∗c=(a
b
)
∗
c=(a
b
)
c
a∗(b∗c)=a∗(2
bc
)=2
a2
bc
eg:−Leta=2,b=3 and c=4
(a∗b)
∗
c=(2∗3)
∗
4=(2
3
)
∗
4=8∗4=8
4
a∗(b∗c)=2
∗
(3∗4)=2
∗
(3
4
)=2∗81=2
81
Since (a∗b)∗c
=a∗(b∗c)
∗ is not an associative binary operation.
vi)On R−{−1}, define a∗b=
b+1
a
Check commutative
∗ is commutative if a∗b=b∗a
a∗b=
b+1
a
b∗a=
a+1
b
Since a∗b
=b∗a
∗ is not commutatie.
Check associative
∗ is associative if (a∗b)∗c=a∗(b∗c)
(a∗b)∗c=(
b+1
a
)
∗
c=
c
b
a
+1
=
c(b+1)
a
a∗(b∗c)=a∗(
c+1
b
)=
c+1
b
a
=
b
a(c+1)
Since (a∗b)∗c
=a∗(b∗c)
∗ is not a associative binary operation