Answer: Downhill:10mph Uphill:5mph
Step-by-step explanation:
We are looking for Dennis’s downhill speed.
Let
r=
Dennis’s downhill speed.
His uphill speed is
5
miles per hour slower.
Let
r−5=
Dennis’s uphill speed.
Enter the rates into the chart. The distance is the same in both directions,
20
miles.
Since
D=rt
, we solve for
t
and get
t=
D
r
.
We divide the distance by the rate in each row and place the expression in the time column.
Rate
×
Time
=
Distance
Downhill
r
20
r
20
Uphill
r−5
20
r−5
20
Write a word sentence about the time.
The total time traveled was
6
hours.
Translate the sentence to get the equation.
20
r
+
20
r−5
=6
Solve.
20(r−5)+20(r)
40r−100
0
0
0
=
=
=
=
=
6(r)(r−5)
6
r
2
−30r
6
r
2
−70r+100
2(3
r
2
−35r+50)
2(3r−5)(r−10)
Use the Zero Product Property.
(r−10)=0
r=10
(3r−5)=0
r=
5
3
The solution
5
3
is unreasonable because
5
3
−5=−
10
3
and his uphill speed cannot be negative. So, Dennis's downhill speed is
10
mph and his uphill speed is
10−5=5
mph.
Check. Is
10
mph a reasonable speed for biking downhill? Yes.
Downhill:
10 mph
5 mph⋅
20 miles
5 mph
=20 miles
Uphill:
10−5=5 mph
(10−5) mph⋅
20 miles
10−5 mph
=20 miles
The total time traveled was
6
hours.
Dennis’ downhill speed was
10
mph and his uphill speed was
5
mph.
Volume= Length * width ( aka Base ) * height
Break up the figure into easier figures, a small square and a bigger square.
Small square- 3*2*1 = 6 cm
Large Square- 7*6*1 = 42 cm
42 + 6 = 48 cm. But wait! You have to take one more step, which is minus-ing 6 from 48. Why? Notice that there is a little area where a side of the small square meets the bigger square. That little area is worth 3 cm ( length is 3, height is 1 cm ) times 2 ( 3 cm is one side, another 3 cm is the other side from the other square ) = 6 cm.
Your total answer should be 42. ( or 48, if your teacher doesn't count the area where the squares meet/join together ).
Answer:
HAPPY BURFDAY
Step-by-step explanation:
-18-6k= 1+3k
9k=-19
k=-19/9
k=-2 and 1/9
Answer:
B. 21x + 40 ≤ 124
Step-by-step Explanation:
Maximum amount budgeted = $124 (this means they can't spend more than this)
x = number of people
Cost per head = $21
Given that Mr Walter already spent $40, which is part of the money budgeted, the number of people that can go canoeing cam be expressed with the following inequality:
21x + 40 ≤ 124
(note: the amount total to be spent will either be equal to or greater than $124, because it's the maximum amount budgeted for spending).