if it has a diameter of 8, that means its radius is half that, or 4.
![\bf \textit{volume of a cone}\\\\ V=\cfrac{\pi r^2 h}{3}~~ \begin{cases} r=radius\\ h=height\\[-0.5em] \hrulefill\\ r=4\\ h=5 \end{cases}\implies V=\cfrac{\pi (4)^2(5)}{3}\implies V=\cfrac{80\pi }{3} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill \stackrel{using~\pi =3.14}{V= 83.7\overline{3}}~\hfill](https://tex.z-dn.net/?f=%20%5Cbf%20%5Ctextit%7Bvolume%20of%20a%20cone%7D%5C%5C%5C%5C%0AV%3D%5Ccfrac%7B%5Cpi%20r%5E2%20h%7D%7B3%7D~~%0A%5Cbegin%7Bcases%7D%0Ar%3Dradius%5C%5C%0Ah%3Dheight%5C%5C%5B-0.5em%5D%0A%5Chrulefill%5C%5C%0Ar%3D4%5C%5C%0Ah%3D5%0A%5Cend%7Bcases%7D%5Cimplies%20V%3D%5Ccfrac%7B%5Cpi%20%284%29%5E2%285%29%7D%7B3%7D%5Cimplies%20V%3D%5Ccfrac%7B80%5Cpi%20%7D%7B3%7D%0A%5C%5C%5C%5C%5B-0.35em%5D%0A%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%0A~%5Chfill%20%5Cstackrel%7Busing~%5Cpi%20%3D3.14%7D%7BV%3D%2083.7%5Coverline%7B3%7D%7D~%5Chfill%20)
Answer:
Area of ΔDEF is
.
Step-by-step explanation:
Given;
ΔABC and ΔDEF is similar and ∠B ≅ ∠E.
Length of AB =
and
Length of DE = 
Area of ΔABC = 
Solution,
Since, ΔABC and ΔDEF is similar and ∠B ≅ ∠E.
Therefore,

Where triangle 1 and triangle 2 is ΔABC and ΔDEF respectively.
If two triangles are similar, then the ratio of the area of both triangles is proportional to the square of the ratio of their corresponding sides.

Thus the area of ΔDEF is
.
(57/4, 31/4)
This was using system of equations
Answer:
it is given
, angle 2
, angle 3
, converse alternate exterior angles theorem
Step-by-step explanation:
We know that angle 1 is congruent to angle 3 and that line l is parallel to line m because it is <u>given
</u>. We see that <u>
angle 2
</u> is congruent to <u>angle 3</u> by the alternate interior angles theorem. Therefore, angle 1 is congruent to angle 2 by the transitive property. So, we can conclude that lines p and q are parallel by the <u>
converse alternate exterior angles theorem
</u>.
Answer:
P(x) = 0.50x - 5
Step-by-step explanation:
x = number of glasses sold
She charges $0.50 per glass, so her revenue is
R(x) = 0.50x
which is the amount of money she brings in
Her cost function is
C(x) = 5
assuming she only spends that $5.00 on the supplies mentioned.
The profit P(x) is the difference of revenue and cost
Profit = Revenue - Cost
P(x) = R(x) - C(x)
P(x) = 0.50x - 5