Answer:
16 units
Step-by-step explanation:
see the attached figure to better understand the problem
Applying the Intersecting Chords Theorem
we have that

substitute the given values


Simplify




Find out the length of segment DB


<em>Note</em> In this problem it was not necessary to determine the value of x to calculate the DB segment.
Anyway, the calculation was done for didactic purposes.
Answer:
a. 1200 f. 900
b. 600 g. 5700
c. 900 h. 4800
d. 300 i. 8300
e. 800 j. 8500
Step-by-step explanation:
First of all, you need to compute the sums. I find a calculator handy for this.
To round to hundreds, you can examine the digit in the next place to the right of the hundreds place. That digit in the tens place needs to be compared to 5. If it is 5 or greater, add 1 to the digit in the hundreds place. After you have done that, set the digits to the right of the hundreds place to zero.
__
Alternatively, you can add 1/2 of 100 to the sum, then set the digits to the right of the 100s place to zero. (Adding 50 will only change the 100's place digit if the 10's place digit is 5 or more.) This method doesn't require you do any thinking about the size of the digit; it is purely mechanical.
The sums and their rounded values are ...
a. 1221 ⇒ 1200
b. 568 ⇒ 600
c. 931 ⇒ 900
d. 347 ⇒ 300
e. 798 ⇒ 800
f. 911 ⇒ 900
g. 5681 ⇒ 5700
h. 4766 ⇒ 4800
i. 8328 ⇒ 8300
j. 8507 ⇒ 8500
Answer:
h(t) = -5*t^2 + 20*t + 2
Step-by-step explanation:
First, we know that the motion equation of the ball will be quadratic, so we write the equation:
h(t) = a*t^2 + b*t + c
Now we need to work with the data in the table.
h(1) = 17
h(3) = 17
h(1) = h(2) = 17
Then we have a symmetry around:
(3 - 1)/2 + 1 = 2
Remember that the symmetry is around the vertex of the parabola, then we can conclude that the vertex of the parabola is the point:
(2, h(2)) = (2, 22)
Remember that for a quadratic equation:
y = a*x^2 + b*x + c
with a vertex (h, k)
we can rewrite our function as:
y = a*(x - h)^2 + k
So in this case, we can rewrite our function as:
h(t) = a*(t - 2)^2 + 22
To find the value of a, notice the first point in the table:
(0, 2)
then we have:
h(0) = 2 = a*(0 - 2)^2 + 22
= 2 = a*(-2)^2 + 22
2 = a*(4) + 22
2 - 22 = a*(4)
-20/4 = -5 = a
Then our function is:
h(t) = -5*(t - 2)^2 + 22
Now we just expand it:
h(t) = -5*(t^2 - 4*t + 4) + 22
h(t) = -5*t^2 + 20*t + 2
The correct option is the first one.
Answer:
2,700
Step-by-step explanation:
A=2(wl+hl+hw)=2·(20·30+15·30+15·20)=2700
A^2 -121 = a^2 -11^2 = (a-11)(a+11)
so the second choice is right sure