![\bf \begin{array}{clclll} -6&+&6\sqrt{3}\ i\\ \uparrow &&\uparrow \\ a&&b \end{array}\qquad \begin{cases} r=\sqrt{a^2+b^2}\\ \theta =tan^{-1}\left( \frac{b}{a} \right) \end{cases}\qquad r[cos(\theta )+i\ sin(\theta )]\\\\ -------------------------------\\\\](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Barray%7D%7Bclclll%7D%0A-6%26%2B%266%5Csqrt%7B3%7D%5C%20i%5C%5C%0A%5Cuparrow%20%26%26%5Cuparrow%20%5C%5C%0Aa%26%26b%0A%5Cend%7Barray%7D%5Cqquad%20%0A%5Cbegin%7Bcases%7D%0Ar%3D%5Csqrt%7Ba%5E2%2Bb%5E2%7D%5C%5C%0A%5Ctheta%20%3Dtan%5E%7B-1%7D%5Cleft%28%20%5Cfrac%7Bb%7D%7Ba%7D%20%5Cright%29%0A%5Cend%7Bcases%7D%5Cqquad%20r%5Bcos%28%5Ctheta%20%29%2Bi%5C%20sin%28%5Ctheta%20%29%5D%5C%5C%5C%5C%0A-------------------------------%5C%5C%5C%5C)

now, notice, there are two valid angles for such a tangent, however, if we look at the complex pair, the "a" is negative and the "b" is positive, that means, "x" is negative and "y" is positive, and that only occurs in the 2nd quadrant, so the angle is in the second quadrant, not on the fourth quadrant.
thus
Answer:
An equation for each situation, in terms of x
A = 35 + 3x
B = 80 + 2x
The interval of miles driven x, for which Company A is cheaper than Company B is 0 to 44.9 miles.
Step-by-step explanation:
Let A represent the amount Company A would charge if Piper drives x miles
Let B represent the amount Company B would charge if Piper drives x miles.
Company A charges an initial fee of $35 for the rental plus $3 per mile driven.
A= $35 + $3 × x
A = 35 + 3x
Company B charges an initial fee of $80 for the rental plus $2 per mile driven.
B = $80 + $2 × x
B = 80 + 2x
The interval of miles driven x, for which Company A is cheaper than Company B.
= A < B
35 + 3x < 80 + 2x
3x - 2x < 80 - 35
x < 45 miles
That is: any number of miles driven below 45 miles makes Company A cheaper than Company B
The interval of miles driven x, for which Company A is cheaper than Company B is 0 to 44.9 miles.
23x =14 this will be the answer
Answer:
Yes, girls are more likely to call more.
Step-by-step explanation: