The distance between (2,5) and (6,1) is:

The distance between the fourth vertex and (4,-1) should also be 4√2
The only point that gives us that distance is
B. (0,3)
Your final answer is
B. (0,3)
Answer:
1. Reflect ABC about the line AC and then translate 1 unit to the right.
2. Translate ABC 1 unit to the right and then reflect it about the line AC.
Step-by-step explanation:
We are given that,
ABC is transformed using glide reflection to map onto DEF.
Since, we know,
'Glide Reflection' is the transformation involving translation and reflection.
So, we can see that,
ABC can be mapped onto DEF by any of the following glide reflections:
1. Reflect ABC about the line AC and then translate 1 unit to the right.
2. Translate ABC 1 unit to the right and then reflect it about the line AC.
Hence, any of the two glide reflection will map ABC onto DEF.
the third holds 3/20 more than the first ,didn't I just answer this?lol
Answer:
x=2
Step-by-step explanation:
x+2=4
x=2
PART A
The equation of the parabola in vertex form is given by the formula,

where

is the vertex of the parabola.
We substitute these values to obtain,

The point, (3,6) lies on the parabola.
It must therefore satisfy its equation.




Hence the equation of the parabola in vertex form is

PART B
To obtain the equation of the parabola in standard form, we expand the vertex form of the equation.

This implies that

We expand to obtain,

This will give us,


This equation is now in the form,

where

This is the standard form