6 be cause 8 times 6 equals 48
Answer:
$8.85
Step-by-step explanation:
This a question of direct variation, so we can make out a relationship between the two factors. 12 is 2/3 of 18, so the cost of 12 would also be 2/3 of the cost of 18. We can now make an equation to solve.

Answer:
x > -1
Step-by-step explanation:
Simplify the inequality using the distributive property (multiply the term outside the bracket with each number inside the bracket). Then, isolate 'x' by performing the reverse operations for every number that's on the same side as 'x'. (Reverse operations 'cancel out' a number.)
18 < -3(4x - 2) Expand this to simplify
18 < (-3)(4x) - (-3)(2) Multiply -3 with 4x and -2
18 < -12x + 6 Start isolating 'x'
18 - 6 < -12x + 6 - 6 Subtract 6 from both sides
18 - 6 < -12x '+ 6' is cancelled out on the right side
12 < -12x Subtracted 6 from 18 on the left side
12/-12 < -12x/-12 Divide both sides by -12
12/-12 < x 'x' is isolated. Simplify left side
-1 < x Answer
x > -1 Standard formatting puts variable on the left side
Answer: complex equations has n number of solutions, been n the equation degree. In this case:
![Z=\frac{\sqrt[8]{2} }{\sqrt[4]{2}} e^{i11,25°}](https://tex.z-dn.net/?f=Z%3D%5Cfrac%7B%5Csqrt%5B8%5D%7B2%7D%20%7D%7B%5Csqrt%5B4%5D%7B2%7D%7D%20e%5E%7Bi11%2C25%C2%B0%7D)
![Z=\frac{\sqrt[8]{2} }{\sqrt[4]{2}} e^{i101,25°}](https://tex.z-dn.net/?f=Z%3D%5Cfrac%7B%5Csqrt%5B8%5D%7B2%7D%20%7D%7B%5Csqrt%5B4%5D%7B2%7D%7D%20e%5E%7Bi101%2C25%C2%B0%7D)
![Z=\frac{\sqrt[8]{2} }{\sqrt[4]{2}} e^{i191,25°}](https://tex.z-dn.net/?f=Z%3D%5Cfrac%7B%5Csqrt%5B8%5D%7B2%7D%20%7D%7B%5Csqrt%5B4%5D%7B2%7D%7D%20e%5E%7Bi191%2C25%C2%B0%7D)
![Z=\frac{\sqrt[8]{2} }{\sqrt[4]{2}} e^{i281,25°}](https://tex.z-dn.net/?f=Z%3D%5Cfrac%7B%5Csqrt%5B8%5D%7B2%7D%20%7D%7B%5Csqrt%5B4%5D%7B2%7D%7D%20e%5E%7Bi281%2C25%C2%B0%7D)
![Z=\frac{\sqrt[8]{2} }{\sqrt[4]{2}} e^{i78,75°}](https://tex.z-dn.net/?f=Z%3D%5Cfrac%7B%5Csqrt%5B8%5D%7B2%7D%20%7D%7B%5Csqrt%5B4%5D%7B2%7D%7D%20e%5E%7Bi78%2C75%C2%B0%7D)
![Z=\frac{\sqrt[8]{2} }{\sqrt[4]{2}} e^{i168,75°}](https://tex.z-dn.net/?f=Z%3D%5Cfrac%7B%5Csqrt%5B8%5D%7B2%7D%20%7D%7B%5Csqrt%5B4%5D%7B2%7D%7D%20e%5E%7Bi168%2C75%C2%B0%7D)
![Z=\frac{\sqrt[8]{2} }{\sqrt[4]{2}} e^{i258,75°}](https://tex.z-dn.net/?f=Z%3D%5Cfrac%7B%5Csqrt%5B8%5D%7B2%7D%20%7D%7B%5Csqrt%5B4%5D%7B2%7D%7D%20e%5E%7Bi258%2C75%C2%B0%7D)
![Z=\frac{\sqrt[8]{2} }{\sqrt[4]{2}} e^{i348,75°}](https://tex.z-dn.net/?f=Z%3D%5Cfrac%7B%5Csqrt%5B8%5D%7B2%7D%20%7D%7B%5Csqrt%5B4%5D%7B2%7D%7D%20e%5E%7Bi348%2C75%C2%B0%7D)
Step-by-step explanation:
I start with a variable substitution:

Then:

Solving the quadratic equation:


Replacing for the original variable:
![Z=\sqrt[4]{0,5+0,5i}](https://tex.z-dn.net/?f=Z%3D%5Csqrt%5B4%5D%7B0%2C5%2B0%2C5i%7D)
or ![Z=\sqrt[4]{0,5-0,5i}](https://tex.z-dn.net/?f=Z%3D%5Csqrt%5B4%5D%7B0%2C5-0%2C5i%7D)
Remembering that complex numbers can be written as:

Using this:

Solving for the modulus and the angle:
![Z=\left \{ {{\sqrt[4]{\frac{\sqrt{2}}{2} e^{i45}} = \sqrt[4]{\frac{\sqrt{2}}{2} } \sqrt[4]{e^{i45}} } \atop {\sqrt[4]{\frac{\sqrt{2}}{2} e^{i-45}} = \sqrt[4]{\frac{\sqrt{2}}{2} } \sqrt[4]{e^{i-45}} }} \right.](https://tex.z-dn.net/?f=Z%3D%5Cleft%20%5C%7B%20%7B%7B%5Csqrt%5B4%5D%7B%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%20e%5E%7Bi45%7D%7D%20%3D%20%5Csqrt%5B4%5D%7B%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%20%7D%20%5Csqrt%5B4%5D%7Be%5E%7Bi45%7D%7D%20%7D%20%5Catop%20%7B%5Csqrt%5B4%5D%7B%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%20e%5E%7Bi-45%7D%7D%20%3D%20%5Csqrt%5B4%5D%7B%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%20%7D%20%5Csqrt%5B4%5D%7Be%5E%7Bi-45%7D%7D%20%7D%7D%20%5Cright.)
The possible angle respond to:

Been "RAng" the resultant angle, "Ang" the original angle, "n" the degree of the root and "i" a value between 1 and "n"
In this case n=4 with 2 different angles: Ang = 45º and Ang = 315º
Obtaining 8 different angles, therefore 8 different solutions.
The answer is (x+3)(x+5).