Answer:
2.4 moles of oxygen are needed to react with 87 g of aluminium.
Explanation:
Chemical equation:
4Al(s) + 3O₂(l) → 2AlO₃(s)
Given data:
Mass of aluminium = 87 g
Moles of oxygen needed = ?
Solution:
Moles of aluminium:
Number of moles of aluminium= Mass/ molar mass
Number of moles of aluminium= 87 g/ 27 g/mol
Number of moles of aluminium= 3.2 mol
Now we will compare the moles of aluminium with oxygen.
Al : O₂
4 : 3
3.2 : 3/4×3.2 = 2.4 mol
2.4 moles of oxygen are needed to react with 87 g of aluminium.
Answer:
30 cm³
Explanation:
Step 1: Given data
- Density of aluminum (ρ): 2.7 g/cm³
- Mass of aluminum (m): 81 g
- Volume occupied by aluminum (V): ?
Step 2: Calculate the volume occupied by aluminum
The density of aluminum is equal to its mass divided by its volume.
ρ = m/V
V = m/ρ
V = 81 g / 2.7 g/cm³
V = 30 cm³
Answer:
Holmium can absorb neutrons, so it is used in nuclear reactors to keep a chain reaction under control. Its alloys are used in some magnets. Holmium has no known biological role, and is non-toxic. Holmium is found as a minor component of the minerals monazite and bastnaesite.
Explanation:
this is basically used in industries
answer:
the student <u>who</u> answers the riddle will get the prize
explanation:
- who is the pronoun
- a pronoun is something that substitutes for a noun
Based on the information given, it should be noted that the ground-state electron configuration of carbon is 1s2 2s2 2p2.
<h3>
What is an electron?</h3>
Electrons are simply the subatomic particles which orbit the nucleus of an atom.
The arrangement of electrons in the atomic orbitals of an atom is known as the electron configuration. This can be determined by using a periodic table.
It should be noted that carbon is the sixth element with a total of 6 electrons in the periodic table. Thus, the atomic number Z = 6.
In conclusion, the ground-state electron configuration of carbon is 1s2 2s2 2p2.
Learn more about carbon on:
brainly.com/question/105003