5.4 M = moles of solute / 1.50 L
<span>Multiply both sides by 1.50 L to isolate moles of solute on the right. </span>
<span>8.1 mol = moles of solute </span>
2H2O=2H2+O2
37.4g H2O(1 mol/18.02)=2.07547 mol H2O
PV=nRT
(1.30)(V)=(2.07547)(.0821)(297)
Vwater=38.92898L
38.92898L (1 mol O2/2 mol H2O)=19.46449L O2 gas
As the ph Decreases, the concentration of hydrogen ions increases,and the solution becomes acidic.
Assuming you have multiple choices... According to the internet, this question is a multiple choice question.
Here are following answers.
"The environmental change that occurs faster is definitely volcanic eruption. It may happen in an instant and destroy everything in its way, whereas the process of regrowth of forest after volcanic eruption is a slow one."
Oil spills may also have the fastest occurring changes in the environment.
Quoted answers are NOT Mine! All credits reserved to the owners:
@WorldlyGlass49 and @<span>Avery123</span>
The amount of energy in kilocalories released from 49 g of glucose given the data is -4.4 Kcal
How to determine the mole of glucose
Mass of glucose = 49 g
Molar mass of glucose = 180.2 g/mol
Mole of glucose = ?
Mole = mass / molar mass
Mole of glucose = 49 / 180.2
Mole of glucose = 0.272 mole
How to determine the energy released
C₆H₁₂O₆ →2C₂H₆O + 2CO₂ ΔH = -16 kcal/mol
From the balanced equation above,
1 mole of glucose released -16 kcal of energy
Therefore,
0.272 mole of glucose will release = 0.272 × -16 = -4.4 Kcal
Thus, -4.4 Kcal were released from the reaction
Learn more about stoichiometry:
brainly.com/question/14735801
#SPJ1