Answer:
17 g Ba(NO₂)₂
General Formulas and Concepts:
<u>Chemistry</u>
- Stoichiometry
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
Explanation:
<u>Step 1: Define</u>
4.5 × 10²² molecules Ba(NO₂)₂
<u>Step 2: Define conversion</u>
Molar Mass of Ba - 137.33 g/mol
Molar Mass of N - 14.01 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of Ba(NO₂)₂ - 137.33 + 2(14.01) + 4(16.00) = 229.35 g/mol
<u>Step 3: Dimensional Analysis</u>
<u />
= 17.1384 g Ba(NO₂)₂
<u>Step 4: Check</u>
<em>We are given 2 sig figs. Follow sig fig rules.</em>
17.1384 g Ba(NO₂)₂ ≈ 17 g Ba(NO₂)₂
Answer: The speed is equivalent to <u>159.39 kilometers per hour </u>or <u>2.65 kilometers per minute.</u>
Explanation:
Given, The speed of a race car = 99 miles/ hour
To convert the speed into kilometers per hour and kilometers per minute
Since 1 mile = 1.61 kilometers
So, Speed of car = (99 ) x (1.61 )
= 159.39 kilometers per hour.
Also, 1 hour = 60 minutes
Then, Speed of car = (159.39) ÷60
= 2.6565≈2.65 kilometer per minute.
Hence, the speed is equivalent to <u>159.39 kilometers per hour </u>or <u>2.65 kilometers per minute.</u>
Answer:

Explanation:
1. Mass of acetylsalicylic acid (ASA)

2. Moles of ASA
HC₉H₇O₄ =180.16 g/mol

3. Concentration of ASA

4. Set up an ICE table

5. Solve for x
![K_{\text{a}} = \dfrac{\text{[H}_{3}\text{O}^{+}]\text{A}^{-}]} {\text{[HA]}} = 3.33 \times 10^{-4}\\\\\dfrac{x^{2}}{0.01757 - x} = 3.33 \times 10^{-4}\\\\\textbf{Check that }\mathbf{x \ll 0.01757}\\\\\dfrac{ 0.01757 }{3.33 \times 10^{-4}} = 53 < 400\\\\\text{The ratio is less than 400. We must solve a quadratic equation.}\\\\x^{2} = 3.33 \times 10^{-4}(0.01757 - x) \\\\x^{2} = 5.851 \times 10^{-6} - 3.33 \times 10^{-4}x\\\\x^{2} + 3.33 \times 10^{-4}x - 5.851 \times 10^{-6} = 0](https://tex.z-dn.net/?f=K_%7B%5Ctext%7Ba%7D%7D%20%3D%20%5Cdfrac%7B%5Ctext%7B%5BH%7D_%7B3%7D%5Ctext%7BO%7D%5E%7B%2B%7D%5D%5Ctext%7BA%7D%5E%7B-%7D%5D%7D%20%7B%5Ctext%7B%5BHA%5D%7D%7D%20%3D%203.33%20%5Ctimes%2010%5E%7B-4%7D%5C%5C%5C%5C%5Cdfrac%7Bx%5E%7B2%7D%7D%7B0.01757%20-%20x%7D%20%3D%203.33%20%5Ctimes%2010%5E%7B-4%7D%5C%5C%5C%5C%5Ctextbf%7BCheck%20that%20%7D%5Cmathbf%7Bx%20%5Cll%200.01757%7D%5C%5C%5C%5C%5Cdfrac%7B%200.01757%20%7D%7B3.33%20%5Ctimes%2010%5E%7B-4%7D%7D%20%3D%2053%20%3C%20400%5C%5C%5C%5C%5Ctext%7BThe%20ratio%20is%20less%20than%20400.%20We%20must%20solve%20a%20quadratic%20equation.%7D%5C%5C%5C%5Cx%5E%7B2%7D%20%3D%203.33%20%5Ctimes%2010%5E%7B-4%7D%280.01757%20-%20x%29%20%5C%5C%5C%5Cx%5E%7B2%7D%20%3D%205.851%20%5Ctimes%2010%5E%7B-6%7D%20-%203.33%20%5Ctimes%2010%5E%7B-4%7Dx%5C%5C%5C%5Cx%5E%7B2%7D%20%2B%203.33%20%5Ctimes%2010%5E%7B-4%7Dx%20-%205.851%20%5Ctimes%2010%5E%7B-6%7D%20%3D%200)
6. Solve the quadratic equation.


7. Calculate the pH
![\rm [H_{3}O^{+}]= x \, mol \cdot L^{-1} = 0.002258 \, mol \cdot L^{-1}\\\text{pH} = -\log{\rm[H_{3}O^{+}]} = -\log{0.002258} = \mathbf{2.65}\\\text{The pH of the solution is } \boxed{\textbf{2.65}}](https://tex.z-dn.net/?f=%5Crm%20%5BH_%7B3%7DO%5E%7B%2B%7D%5D%3D%20x%20%5C%2C%20mol%20%5Ccdot%20L%5E%7B-1%7D%20%3D%200.002258%20%5C%2C%20mol%20%5Ccdot%20L%5E%7B-1%7D%5C%5C%5Ctext%7BpH%7D%20%3D%20-%5Clog%7B%5Crm%5BH_%7B3%7DO%5E%7B%2B%7D%5D%7D%20%3D%20-%5Clog%7B0.002258%7D%20%3D%20%5Cmathbf%7B2.65%7D%5C%5C%5Ctext%7BThe%20pH%20of%20the%20solution%20is%20%7D%20%5Cboxed%7B%5Ctextbf%7B2.65%7D%7D)
Answer:
3. doubles
Explanation:
for an ideal gas behavior, the relationship between volume and temperature is given by Charles law
Charles law states that the volume of a given mass of gas is directly proportional to its temperature provided that pressure remains constant. Mathematically, this is represented as
V ∝ T
V=KT
K = V/T
where V is the volume of the gas
T is the Temperature
k represents the constant of proportionality
For initial and final conditions of a gas,
= 
where 1 and 2 represent initial and final conditions respectively
therefore, T₁ = 100 and T₂ = 200
= 
200 × V₁ = 100 × V₂
divide both sides by 100
2V₁ = V₂
final volume,V₂ = 2V₁
there the volume doubles
Answer : The balanced reduction half-reaction is:

Explanation :
Redox reaction or Oxidation-reduction reaction : It is defined as the reaction in which the oxidation and reduction reaction takes place simultaneously.
Oxidation reaction : It is defined as the reaction in which a substance looses its electrons. In this, oxidation state of an element increases. Or we can say that in oxidation, the loss of electrons takes place.
Reduction reaction : It is defined as the reaction in which a substance gains electrons. In this, oxidation state of an element decreases. Or we can say that in reduction, the gain of electrons takes place.
The given balanced redox reaction is :

The half oxidation-reduction reactions are:
Oxidation reaction : 
Reduction reaction : 
In order to balance the electrons, we multiply the oxidation reaction by 2 and reduction reaction by 3 and then added both equation, we get the balanced redox reaction.
Oxidation reaction : 
Reduction reaction : 
The balanced redox reaction will be:

Thus, the balanced reduction half-reaction is:
