Calculate first the number of moles of ethylene glycol by dividing the mass by the molar mass.
n = (6.21 g ethylene glycol) / 62.1 g/mol
n = 0.1 mol
Then, calculate the molality by dividing the number of moles by the mass of water (in kg).
m = 0.1 mol/ (0.025 kg) = 4m
Then, use the equation,
Tb,f = Tb,i + (kb)(m)
Substituting the known values,
Tb,f = 100°C + (0.512°C.kg/mol)(4 mol/kg)
<em>Tb,f = 102.048°C</em>
The Octet rule is a general rule of thumb that applies to most atoms. Basically, it states that every atom wants to have eight valence electrons in its outermost electron shell.
So potassium is more reactive than lithium because the outer electron of a potassium atom is further from its nucleus than the outer electron of a lithium atom. Hope this answers the question. Have a nice day. Feel free to ask more questions.
Answer:
The amount of NaOH required to prepare a solution of 2.5N NaOH.
The molecular mass of NaOH is 40.0g/mol.
Explanation:
Since,
NaOH has only one replaceable -OH group.
So, its acidity is one.
Hence,
The molecular mass of NaOH =its equivalent mass
Normality formula can be written as:
Substitute the given values in this formula to get the mass of NaOH required.

Hence, the mass of NaOH required to prepare 2.5N and 1L. solution is 100g