Answer:It is because acid and water react violently exothermically, producing heat and occasionally melting the fluid.
Explanation:
TLDR: 6.53x10^5 g NH4ClO4
The stoichiometric coefficients (the numbers in front of the reactants and products) show that Aluminum and Ammonium Perchlorate are consumed at the exact same rate throughout the reaction: 3 parts of one to 3 parts of another.
1.5x10^5 grams of Aluminum, considering that the formula weight of Aluminum is 26.98 g/mol, is equal to 5,559.7 moles of Aluminum. This means that 5,559.7 moles of Ammonium Perchlorate are required to run the reaction to completion.
The formula weight of Ammonium Perchlorate is 117.49 grams a mole, and multiplying it by 5,559.7 moles to react to completion means that 6.53x10^5 grams of Ammonium Perchlorate is required for the reaction.
Answer:
9-10 ppm.
0.2-0.4 ppm.
Explanation:
The proton on the aldehyde group will appear at approximately 9-10 ppm whereas the methylene peak on the alcohol is the only peak 0.2-0.4 ppm for either compound. Aldehydes and aromatics are quite distinctive in the Nuclear magnetic resonance (NMR). Aldehydes show up from 9-10 ppm, usually as a small singlet; aromatic protons show up from 6.5-8.5 ppm. NMR spectroscopy is the use of NMR to study the physical, chemical, and biological properties of matter.
Answer:
Yes, it's temperature dependent
Explanation:
A good fractional distillation depends largely upon maintaining a temperature gradient within the column. Perfectly, the temperature at the bottom of the column should be close or similar to the boiling temperature of the solution in the pot, and it should reduce continuously in the column until it reaches the boiling point of the more volatile component at the top of the column. If the distillation flask is heated too quickly, the whole column will heat up almost distributively and eliminate the desired temperature gradient. The result will be little fractionation and separation of the components.