The balanced chemical reaction:
K2SO4 + O2 = 2KO2 + SO2
Assuming that the reaction is complete, all of the potassium sulfate is consumed. We relate the substances using the chemical reaction. We calculate as follows:
7.20 g K2SO4 ( 1 mol / 174.26 g) ( 1 mol O2 / 1 mol K2SO4 ) ( 32 g / 1 mol ) = 1.32 g O2 consumed in the reaction.
It's TISSUES.
CELLS, TISSUES, ORGANS, ORGAN SYSTEM, NEW ORGANISM
Answer:
Option B
Transfers energy to the water
Explanation:
Warm air transfers energy to the water when it flows over cold currents. This means that the warm air loses heat energy to the cold currents thus, raising its temperature.
Whenever there is a temperature difference between two bodies in contact with each other, the Fouriers law explains that there is always a transfer of heat from the hotter body to the colder body until they become the same temperature.
Thus, following this, heat will flow from the warm air to the cold currents.
Answer: , 4 molecules of ammonia, NH3(g) is produced; 2 molecules of ammonia, NH3(g) is produced respectively
Explanation:
The balanced equation is stated below N2(g) + 3H2(g) → 2NH3(g)
1 mole of N2(g) reacts with 3 moles of H2(g) to yield 2 moles of NH3(g)
1) If 2 molecules of N2 react, then the balanced equation will be
2N2(g) + 6H2(g) → 4NH3(g)
Thus, 4 molecules of ammonia, NH3(g) is produced
2) If 3 molecules of H2 react, then the balanced equation will be
N2(g) + 3H2(g) → 2NH3(g)
Thus, 2 molecules of ammonia, NH3(g) is produced