Y - y1 = m(x - x1)
slope(m) = -4/3
(0,-12)....x1 = 0 and y1 = -12
sub
y - (-12) = -4/3(x - 0) =
y + 12 = -4/3(x - 0) <=== point slope form
y + 12 = -4/3x
y = -4/3x - 12 <=== slope intercept form
y = -4/3x - 12
4/3x + y = -12
4x + 3y = -36 <=== standard form
<span>The problem is to calculate the angles of the triangle. However, it is not clear which angle you have to calculate, so we are going to calculate all of them
</span>
we know that
Applying the law of cosines
c²=a²+b²-2*a*b*cos C------> cos C=[a²+b²-c²]/[2*a*b]
a=12.5
b=15
c=11
so
cos C=[a²+b²-c²]/[2*a*b]---> cos C=[12.5²+15²-11²]/[2*12.5*15]
cos C=0.694------------> C=arc cos (0.694)-----> C=46.05°-----> C=46.1°
applying the law of sines calculate angle B
15 sin B=11/sin 46.1-----> 15*sin 46.1=11*sin B----> sin B=15*sin 46.1/11
sin B=15*sin 46.1/11-----> sin B=0.9826----> B=arc sin (0.9826)
B=79.3°
calculate angle A
A+B+C=180------> A=180-B-C-----> A=180-79.3-46.1----> A=54.6°
the angles of the triangle are
A=54.6°
B=79.3°
C=46.1°
Answer:
x = q - 3
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
Step-by-step explanation:
<u>Step 1: Define Equation</u>
x + 3 = q
<u>Step 2: Solve for </u><em><u>x</u></em>
- Subtract 3 on both sides: x = q - 3
A rational number is a number that can be expressed as the quotient or fraction p/q of two integers, a numerator p and a non-zero denominator q. Since q may be equal to 1, every integer is a rational number.