Answer:
C
Step-by-step explanation:
Calculate AC using Pythagoras' identity in ΔABC
AC² = 20² - 12² = 400 - 144 = 256, hence
AC =
= 16
Now find AD² from ΔACD and ΔABD
ΔACD → AD² = 16² - (20 - x)² = 256 - 400 + 40x - x²
ΔABD → AD² = 12² - x² = 144 - x²
Equate both equations for AD², hence
256 - 400 + 40x - x² = 144 - x²
-144 + 40x - x² = 144 - x² ( add x² to both sides )
- 144 + 40x = 144 ( add 144 to both sides )
40x = 288 ( divide both sides by 40 )
x = 7.2 → C
Answer:
Lisa earns more money because John makes $16 while Lisa makes $18.
Answer: 44 miles
WORKINGS
Given,
The distance between Indianapolis and Lima, IL = 173 miles
The distance between Indianapolis and Dayton, ID = 165 miles
The distance between Dayton and Lima, DL is unknown
Since there are straight roads connecting the three cities, the connection between them form a right angles triangle.
The right angle is at Dayton
The hypotenuse is the distance between Indianapolis and Lima, IL
Therefore IL^2 = ID^2 + DL^2
173^2 = 165^2 + DL^2
DL^2 = 173^2 – 165^2
DL^2 = 29929 – 27225
DL^2 = 2704
DL = 52 miles
Therefore, The distance between Dayton and Lima, DL = 52 miles
The question is asking how many more miles would Meg drive if she stopped in Dayton first than if she drove directly to Lima.
That is, Distance of Indianapolis to Dayton + Distance of Dayton to Lima – Direct distance of Indianapolis to Lima
That is, ID + DL – IL
= 165 miles + 52 miles – 173 miles
= 217 miles – 173 miles
= 44 miles
Therefore, Meg would drive 44 more miles if she stopped in Dayton first than if she drove directly to Lima.
Your answer is 506.44.
multiply 662 x .10 now minus that answer from 662 to get 595.80
now multiply that by .15
now minus that by 595.80
gives you 506.43
Answer:
Yes
Step-by-step explanation:
One input to one output is a linear one-to-one function.