1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NikAS [45]
4 years ago
11

Twice a number decreased by the cube of the same number

Mathematics
1 answer:
Aliun [14]4 years ago
7 0
2(n)-n^2

Reorder in standard form: ax^2 + bx + c

-n^2 + 2n + 0
You might be interested in
I need help with this problem asap
FinnZ [79.3K]

════════ ∘◦❁◦∘ ════════

<h3>Answer</h3>

a = 36

b = √3/5

════════════════════

<h3>Known </h3>

Adjuscent = 12√3

════════════════════

<h3>Question</h3>

Opposite = ?

Hypotenuse = ?

════════════════════

<h3>Way to do</h3>

• finding a - opposite

#use tan formula

tan(∅) = opposite / adjuscent

tan(60) = opposite / 12√3

opposite = tan(60) × 12√3

opposite = 36

•finding b - hypotenuse

#use cos formula

cos(∅) = adjuscent / hypotenuse

cos(60) = 12√3 / hypotenuse

hypotenuse = 12√3 : cos(60)

hypotenuse = √3/5

════════════════════

3 0
3 years ago
Hi, how do we do this question?​
Nutka1998 [239]

Answer:

\displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

General Formulas and Concepts:

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring

<u>Algebra II</u>

  • Polynomial Long Division

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Integration Constant C
  • Indefinite Integrals

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Logarithmic Integration

U-Substitution

Step-by-step explanation:

*Note:

You could use u-solve instead of rewriting the integrand to integrate this integral.

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int {\frac{2x}{3x + 1}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integrand] Rewrite [Polynomial Long Division (See Attachment)]:           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\bigg( \frac{2}{3} - \frac{2}{3(3x + 1)} \bigg)} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\frac{2}{3}} \, dx - \int {\frac{2}{3(3x + 1)}} \, dx
  3. [Integrals] Rewrite [Integration Property - Multiplied Constant]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}\int {} \, dx - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx
  4. [1st Integral] Reverse Power Rule:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 3x + 1
  2. [<em>u</em>] Differentiate [Basic Power Rule]:                                                             \displaystyle du = 3 \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{3}{3x + 1}} \, dx
  2. [Integral] U-Substitution:                                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{1}{u}} \, du
  3. [Integral] Logarithmic Integration:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|u| + C
  4. Back-Substitute:                                                                                            \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|3x + 1| + C
  5. Factor:                                                                                                           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = -2 \bigg( \frac{1}{9}ln|3x + 1| - \frac{x}{3}  \bigg) + C
  6. Rewrite:                                                                                                         \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
for the party,the chef makes a large cake using 325 grams of flour ,137 grams of butter ,0.53 kilogram of sugar and 0.5 kilogram
Rom4ik [11]

Answer:

1.492 kg

Step-by-step explanation: 0.5kg+0.53kg=1.03kg=1030grams

1030grams+325grams+137grams=1492 grams

1492/1000=1.492kg

<h2>PLEASE MAKE ME BRAINLIEST!!!</h2>

7 0
4 years ago
Aditi has $50.00 in her wallet. she buys a shirt for $12.00 and also wants to buy some bracelets that are on sale for $0.60 each
Damm [24]
I hope this helps you

5 0
4 years ago
Read 2 more answers
Elizabeth brought a box of donuts to share. There are​ two-dozen (24) donuts in the​ box, all identical in​ size, shape, and col
pochemuha

Answer:

The probability is 6.16%.

Step-by-step explanation:

Total number of donuts = 24

Number of jelly filled donuts = 2

Number of lemon filled donuts = 5

Number of custard filled donuts = 17

The probability of selecting a jelly​-filled donut = \frac{2}{24} = 0.0833

And probability followed by custard​-filled donut = \frac{17}{23} = 0.7391 (23 because you ate 1 donut already)

Hence, the required probability is :

0.0833\times0.7391=0.0615 or 6.156% ≈ 6.16%

4 0
3 years ago
Other questions:
  • Which strategy best explains how to solve this problem?
    11·1 answer
  • Alaska has a coastline of about 664 thousand miles Florida has about 135 thousand miles of coastline how many times more coastli
    8·1 answer
  • A right triangle has an area of 50 square inches. If the triangle is an isosceles triangle, what are the lengths of the legs of
    8·1 answer
  • How many zeros does the function f(x) = 7x13 − 12x9 + 16x5 − 23x + 42 have?
    7·1 answer
  • -2x+8x=20 ans can you please include the steps. Thank you
    10·2 answers
  • Motorcycle plates in colorado have three numbers followed by three letters. how many motorcycle plates area available with these
    9·1 answer
  • Click here if your good t math it ez
    14·1 answer
  • Please help on question 12 or 13 as soon as possible
    15·1 answer
  • Complete the table using the equation
    10·1 answer
  • Johnny has a box filled with 10 black marbles and 5 purple marbles what are the odds he pulls to black marbles in a row?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!