Answer:
The probability is 1/8
Step-by-step explanation:
We have 2 nectarines in a total of 16 pieces of fruit in a basket, so the probability of random selected piece of fruit being a nectarine is the number of nectarines over the total number of pieces of fruit:
Probability = Number of nectarines / Total pieces = 2 / 16
To find the fraction in the simplest form, we divide the numerator and denominator by 2:
Probability = (2/2) / (16/2) = 1/8
I'm NOT 100% confident in my answers.
Graph 1:
Range: Option B
Graph 2:
Range: Option A
The range has to start at zero since that's the lowest point we can go, only one with zero is first option.
RATE AS BRAINLIEST
Let, money spend by jane = x
Maggie spend = 2x-6
So, x+2x-6 = 45
3x= 51
x=17, 2x-6 = 28
So, jane spend $17 & Maggie spend $28
Step1: Define an odd integer.
Define the first odd integer as (2n + 1), for n = 0,1,2, ...,
Note that n is an integer that takes values 0,1,2, and so no.
Step 2: Create four consecutive odd integers.
Multiplying n by 2 guarantees that 2n will be zero or an even number.
Therefore (2n + 1) is guaranteed to be an odd number.
By adding 2 to the odd integer (2n+1), the next number (2n+3) will also be an odd integer.
Let the four consecutive odd integers be
2n+1, 2n +3, 2n +5, 2n +7
Step 3: require that the four consecutive integers sum to 160.
Because the sum of the four consecutive odd integers is 160, therefore
2n+1 + 2n+3 + 2n+5 + 2n +7 = 160
8n + 16 = 160
8n = 144
n = 18
Because 2n = 36, the four consecutive odd integers are 37, 39, 41, 43.
Answer: 37,39,41,43
Use the power rule for differentiation:

You can use this formula if you remember that a root is just a rational exponential:
![\sqrt[4]\ln(x) = (\ln(x))^{\frac{1}{4}}](https://tex.z-dn.net/?f=%20%5Csqrt%5B4%5D%5Cln%28x%29%20%3D%20%28%5Cln%28x%29%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%20)
So, remembering that the derivative of the logarithm is 1/x, you have

Which you can rewrite as
![\dfrac{1}{4}(\ln(x))^{\frac{1}{4}-1}\dfrac{1}{x} =\dfrac{1}{4}(\ln(x))^{\frac{-3}{4}}\dfrac{1}{x} =\dfrac{1}{4}\dfrac{1}{\sqrt[4]{\ln(x))^3}}\dfrac{1}{x} = \dfrac{1}{4x\sqrt[4]{\ln(x))^3}}](https://tex.z-dn.net/?f=%5Cdfrac%7B1%7D%7B4%7D%28%5Cln%28x%29%29%5E%7B%5Cfrac%7B1%7D%7B4%7D-1%7D%5Cdfrac%7B1%7D%7Bx%7D%20%3D%5Cdfrac%7B1%7D%7B4%7D%28%5Cln%28x%29%29%5E%7B%5Cfrac%7B-3%7D%7B4%7D%7D%5Cdfrac%7B1%7D%7Bx%7D%20%3D%5Cdfrac%7B1%7D%7B4%7D%5Cdfrac%7B1%7D%7B%5Csqrt%5B4%5D%7B%5Cln%28x%29%29%5E3%7D%7D%5Cdfrac%7B1%7D%7Bx%7D%20%3D%20%5Cdfrac%7B1%7D%7B4x%5Csqrt%5B4%5D%7B%5Cln%28x%29%29%5E3%7D%7D%20)