1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Brilliant_brown [7]
4 years ago
6

What is the best estimate for the product 289 and 7? Make it clear to understand : )

Mathematics
1 answer:
xxMikexx [17]4 years ago
4 0
Hey friend!
Let's figure this out!

The best estimate for the product 289 and 7 is  2,900.

290 x 10 = 2,900.

You must round the multiplicand and multiplier to come up with the best estimate.


Hope this helps!
You might be interested in
Help please !!! At a local Brownsville play production, 420 tickets were sold. The ticket prices varied on the seating
Radda [10]

Answer:

n = 12$    x = 8$   y = 10$     where n, x, and y are number of tickets

12 n + 8 x + 10 y = 3920     and n + x + y = 420

12n + 8 (x + y) + 2 y = 3920

12 n + 8 (5 n) + 2 y = 3920        since 5 (x + y) = n

52 n + 2 y = 3920   or  y = 1960 - 26 n

Also, n + x + y = 420   or n + 5 n = 420   since x + y = 5 n

n = 70    so 70 of the $12 were sold

And since y = 1960 - 26 n     we have y = 140 tickets

Now 12 * 70 + 8 x + 140 * 10 = 3920

This gives x = 210 tickets

Check:   210 + 140 + 70 = 420 tickets

Also, 12 * 70 + 210 * 8 + 140 * 10 = 3920

7 0
3 years ago
The latest mystery novel cost $24 the table shows the sales of that this novel by a bookstore what was the dollar amount of the
Ket [755]

Answer:

  $3768

Step-by-step explanation:

The amount of sales will be the product of the selling price of each book and the number of books sold.

  sales = book price × number of books

  sales = $24 × 157 . . . . . . . . books sold on Saturday

  sales = $3768 . . . . . . . . . . . sales on Saturday

4 0
3 years ago
SUPER URGENT: Complete the general form of the equation of a sinusoidal function having an amplitude of 6, a period of 2pi/3, an
mel-nik [20]

Answer:

y = 6·sin(3·(x - 1)) + c

Step-by-step explanation:

The general form of an equation for a sinusoidal function is presented ad follows;

y = a·sin(b·(x - h) + c

Where;

a = The amplitude of the equation

T = The period = 2·π/b

h = The phase shift

c = The vertical shift

From the question, we have;

a = 6,

2·π/3 = 2·π/b

∴ b = 3

h = 1

We get;

y = 6·sin(3·(x - 1)) + c.

4 0
3 years ago
Find all the missing sides or angles in each right triangles
astra-53 [7]
In previous lessons, we used the parallel postulate to learn new theorems that enabled us to solve a variety of problems about parallel lines:

Parallel Postulate: Given: line l and a point P not on l. There is exactly one line through P that is parallel to l.

In this lesson we extend these results to learn about special line segments within triangles. For example, the following triangle contains such a configuration:

Triangle <span>△XYZ</span> is cut by <span><span>AB</span><span>¯¯¯¯¯¯¯¯</span></span> where A and B are midpoints of sides <span><span>XZ</span><span>¯¯¯¯¯¯¯¯</span></span> and <span><span>YZ</span><span>¯¯¯¯¯¯¯</span></span> respectively. <span><span>AB</span><span>¯¯¯¯¯¯¯¯</span></span> is called a midsegment of <span>△XYZ</span>. Note that <span>△XYZ</span> has other midsegments in addition to <span><span>AB</span><span>¯¯¯¯¯¯¯¯</span></span>. Can you see where they are in the figure above?

If we construct the midpoint of side <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span> at point C and construct <span><span>CA</span><span>¯¯¯¯¯¯¯¯</span></span> and <span><span>CB</span><span>¯¯¯¯¯¯¯¯</span></span> respectively, we have the following figure and see that segments <span><span>CA</span><span>¯¯¯¯¯¯¯¯</span></span> and <span><span>CB</span><span>¯¯¯¯¯¯¯¯</span></span> are midsegments of <span>△XYZ</span>.

In this lesson we will investigate properties of these segments and solve a variety of problems.

Properties of midsegments within triangles

We start with a theorem that we will use to solve problems that involve midsegments of triangles.

Midsegment Theorem: The segment that joins the midpoints of a pair of sides of a triangle is:

<span>parallel to the third side. half as long as the third side. </span>

Proof of 1. We need to show that a midsegment is parallel to the third side. We will do this using the Parallel Postulate.

Consider the following triangle <span>△XYZ</span>. Construct the midpoint A of side <span><span>XZ</span><span>¯¯¯¯¯¯¯¯</span></span>.

By the Parallel Postulate, there is exactly one line though A that is parallel to side <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span>. Let’s say that it intersects side <span><span>YZ</span><span>¯¯¯¯¯¯¯</span></span> at point B. We will show that B must be the midpoint of <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span> and then we can conclude that <span><span>AB</span><span>¯¯¯¯¯¯¯¯</span></span> is a midsegment of the triangle and is parallel to <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span>.

We must show that the line through A and parallel to side <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span> will intersect side <span><span>YZ</span><span>¯¯¯¯¯¯¯</span></span> at its midpoint. If a parallel line cuts off congruent segments on one transversal, then it cuts off congruent segments on every transversal. This ensures that point B is the midpoint of side <span><span>YZ</span><span>¯¯¯¯¯¯¯</span></span>.

Since <span><span><span>XA</span><span>¯¯¯¯¯¯¯¯</span></span>≅<span><span>AZ</span><span>¯¯¯¯¯¯¯</span></span></span>, we have <span><span><span>BZ</span><span>¯¯¯¯¯¯¯</span></span>≅<span><span>BY</span><span>¯¯¯¯¯¯¯¯</span></span></span>. Hence, by the definition of midpoint, point B is the midpoint of side <span><span>YZ</span><span>¯¯¯¯¯¯¯</span></span>. <span><span>AB</span><span>¯¯¯¯¯¯¯¯</span></span> is a midsegment of the triangle and is also parallel to <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span>.

Proof of 2. We must show that <span>AB=<span>12</span>XY</span>.

In <span>△XYZ</span>, construct the midpoint of side <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span> at point C and midsegments <span><span>CA</span><span>¯¯¯¯¯¯¯¯</span></span> and <span><span>CB</span><span>¯¯¯¯¯¯¯¯</span></span> as follows:

First note that <span><span><span>CB</span><span>¯¯¯¯¯¯¯¯</span></span>∥<span><span>XZ</span><span>¯¯¯¯¯¯¯¯</span></span></span> by part one of the theorem. Since <span><span><span>CB</span><span>¯¯¯¯¯¯¯¯</span></span>∥<span><span>XZ</span><span>¯¯¯¯¯¯¯¯</span></span></span> and <span><span><span>AB</span><span>¯¯¯¯¯¯¯¯</span></span>∥<span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span></span>, then <span>∠<span>XAC</span>≅∠<span>BCA</span></span> and <span>∠<span>CAB</span>≅∠<span>ACX</span></span> since alternate interior angles are congruent. In addition, <span><span><span>AC</span><span>¯¯¯¯¯¯¯¯</span></span>≅<span><span>CA</span><span>¯¯¯¯¯¯¯¯</span></span></span>.

Hence, <span>△<span>AXC</span>≅△<span>CBA</span></span> by The ASA Congruence Postulate. <span><span><span>AB</span><span>¯¯¯¯¯¯¯¯</span></span>≅<span><span>XC</span><span>¯¯¯¯¯¯¯¯</span></span></span> since corresponding parts of congruent triangles are congruent. Since C is the midpoint of <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span>, we have <span>XC=CY</span> and <span>XY=XC+CY=XC+XC=2AB</span> by segment addition and substitution.

So, <span>2AB=XY</span> and <span>AB=<span>12</span>XY</span>. ⧫

Example 1

Use the Midsegment Theorem to solve for the lengths of the midsegments given in the following figure.

M, N and O are midpoints of the sides of the triangle with lengths as indicated. Use the Midsegment Theorem to find

<span><span> A. <span>MN</span>. </span><span> B. The perimeter of the triangle <span>△XYZ</span>. </span></span><span><span> A. Since O is a midpoint, we have <span>XO=5</span> and <span>XY=10</span>. By the theorem, we must have <span>MN=5</span>. </span><span> B. By the Midsegment Theorem, <span>OM=3</span> implies that <span>ZY=6</span>; similarly, <span>XZ=8</span>, and <span>XY=10</span>. Hence, the perimeter is <span>6+8+10=24.</span> </span></span>

We can also examine triangles where one or more of the sides are unknown.

Example 2

<span>Use the Midsegment Theorem to find the value of x in the following triangle having lengths as indicated and midsegment</span> <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span>.

By the Midsegment Theorem we have <span>2x−6=<span>12</span>(18)</span>. Solving for x, we have <span>x=<span>152</span></span>.

<span> Lesson Summary </span>
8 0
3 years ago
A line segment has endpoints at (-4,-6) and (-6,4). Which reflection will produce an image with endpoints at (4,-6) and (6,4)?
GrogVix [38]
The reflection that mapped line segment given by:
(-4,-6) and (-6,4)
to
(4,-6) and (6,4)
is a reflection on the y-axis which follows the rule:
(x,y)→(-x,y)

5 0
3 years ago
Other questions:
  • If 66,500 lamps are manufactured, how many of those lamps last at least 9,850 hours?
    12·2 answers
  • The equation ac=5 represent a(n) ___ variation
    13·1 answer
  • Name what the triangle is .
    14·2 answers
  • What are the equations to Sum Of Cubes, Difference Of Cubes, and Difference Of Squares?
    7·1 answer
  • A semicircular plate with radius 7 m is submerged vertically in water so that the top is 3 m above the surface. Express the hydr
    6·1 answer
  • -5w = -24.5 what is it. ​
    12·1 answer
  • Whats 2(-1)2 +4(-1)-1=
    5·1 answer
  • An angle is when three rays share a common Initial point. <br>true <br>false
    9·2 answers
  • Is the equation a linear function?<br> y = -x + 3 +
    10·1 answer
  • Anas wants to build a one-sample z interval with 85% confidence to estimate what proportion of users will click an advertisement
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!