Answer:
ΔS= -1 J/K
Explanation:
Given data
Heat Q= -470J
Temperature T=470 K
To find
Entropy change ΔS
Solution
We know that the entropy change of system is ΔS is given by
ΔS=Q/T
We have take heat value Q as negative because the heat is removed from heat reservoir
So
ΔS=(-470J/470K)
ΔS= -1 J/K
Another reason why cats hate water is attributed to their history. There is not much in a cat's background to recommend them for successful interactions with bodies of water, be it small or big. Cat's ancestors lived in dry arid places which means rivers or oceans weren't obstacles they had to face.
Hope this helps:)
D) all of the above is the answer
- Displacement = 10 m
- Time = 5 s
- We know,

- Therefore, the car's velocity

<h3>Answer:</h3>
The car's velocity is 2 m/s.
Hope you could get an idea from here.
Doubt clarification - use comment section.
60.3° from due south and 5.89 m/s For this problem, first calculate a translation that will put John's destination directly on the origin and apply that translation to Mary's destination. Then the vector from the origin to Mary's new destination will be the relative vector of Mary as compared to John. So John is traveling due south at 6.7 m/s. After 1 second, he will be at coordinates (0,-6.7). The translation will be (0,6.7) Mary is traveling 28° West of due south. So her location after 1 second will be (-sin(28)*10.9, -cos(28)*10.9) = (-5.117240034, -9.624128762) After translating that coordinate up by 6.7, you get (-5.117240034, -2.924128762) The tangent of the angle will be 2.924128762/5.117240034 = 0.57142693 The arc tangent is atan(0.57142693) = 29.74481039° Subtract that value from 90 since you want the complement of the angle which is now 60.25518961° So Mary is traveling 60.3° relative to due south as seen from John's point of view. The magnitude of her relative speed is sqrt(-5.117240034^2 + -2.924128762^2) = 5.893783 m/s Rounding the results to 3 significant digits results in 60.3° and 5.89 m/s