Answer:
The net force on the car is 2560 N.
Explanation:
According to work energy theorem, the amount of work done is equal to the change of kinetic energy by an object. If '
' be the work done on an object to change its kinetic energy from an initial value '
' to the final value '
', then mathematically,

where '
' is the mass of the object and '
' and '
' be the initial and final velocity of the object respectively. If '
' be the net force applied on the car, as per given problem, and '
' is the displacement occurs then we can write,

Given,
.
Equating equations (I) and (II),

Answer:
the energy when it reaches the ground is equal to the energy when the spring is compressed.
Explanation:
For this comparison let's use the conservation of energy theorem.
Starting point. Compressed spring
Em₀ = K_e = ½ k x²
Final point. When the box hits the ground
Em_f = K = ½ m v²
since friction is zero, energy is conserved
Em₀ = Em_f
1 / 2k x² = ½ m v²
v =
x
Therefore, the energy when it reaches the ground is equal to the energy when the spring is compressed.
Answer:
Explanation:
From the equation given ; T(m)=21+74⋅10 −0.03m
Plugging the value of m = 10minutes for the time to calculate the temperature at that time instant. The detailed steps is as shown in the attached file
Answer:
<em>Second option</em>
Explanation:
<u>Linear Momentum</u>
The linear momentum of an object of mass m and speed v is
P=mv
If two or more objects are interacting in the same axis, the total momentum is

Where the speeds must be signed according to a fixed reference
The images show a cart of mass 2m moves to the left with speed v since our reference is positive to the right

The second cart of mass m goes to the right at a speed v

The total momentum before the impact is

The total momentum after the collision is negative, both carts will join and go to the left side
The first option shows both carts with the same momentum before the collision and therefore, zero momentum after. It's not correct as we have already proven
The third option shows the 2m cart has a positive greater momentum than the other one. We have proven the 2m car has negative momentum. This option is not correct either
The fourth option shows the two carts keep separated after the collision, which contradicts the condition of the question regarding "they hook together".
The second option is the correct one because the mass
has a negative momentum and then the sum of both masses keeps being negative
Answer:
Explanation:
Lol thats big tufffffffffvffffffftg
fuf