Hi there!

Find the total area by breaking the figure into two rectangles, one trapezoid, and one triangle.
Rectangles:
A = l × w
A = 2.75 × 4 = 11 in²
Solve for the other rectangle's length by subtracting from the total:
12 - 2 - 3 - 4 = 3
A = 3 × 3 = 9 in²
Total rectangle area: 11 + 9 = 20 in²
Trapezoid:
A = 1/2(b1 + b2)h
A = 1/2(4.25 + 2.75)3 = 21/2 = 10.5 in²
Triangle:
A = 1/2(bh)
A = 1/2(2.5 · 2) = 2.5 in²
Add up all of the areas:
20 + 10.5 + 2.5 = 33 in²
Answer: 
<u>Step-by-step explanation:</u>
It is given that θ is between 270° and 360°, which means that θ is located in Quadrant IV ⇒ (x > 0, y < 0). Furthermore, the half-angle will be between 135° and 180°, which means the half-angle is in Quadrant II ⇒
It is given that sin θ =
⇒ y = -7 & hyp = 25
Use Pythagorean Theorem to find "x":
x² + y² = hyp²
x² + (-7)² = 25²
x² + 49 = 625
x² = 576
x = 24
Use the "x" and "hyp" values to find cos θ:
Lastly, input cos θ into the half angle formula:

Reminder: We previously determined that the half-angle will be negative.
Ah u again lol
Perimeter of Isosceles Triangle = 2x + 8
= 2(5) + 8
= 10 + 8
= 18
Therefore, the perimeter is 18. Maybe lol
I believe it coukd be utself or abother answer by itself times x