Answer:
Step-by-step explanation:
Check attachment for solution and better understanding
AC and BC are tangent, then AC and BC will form a right angle with the radius of the circle
Given that,
EC = 20in
And Radius = 26in
Find AC and BC.
Though AC and BC are similar.
Taking Triangle ADC, check attachment, it is a right angle triangle.
Since it is a right angle triangle, we can apply Pythagoras theorem
DC² = AD² + AC²
46² = 26² + AC²
46² - 26² = AC²
AC² = 1440
AC = √1440
AC = 37.95 in
Also, taking triangle DBC
DC² = DB² + BC²
BC² = DC² - DB²
BC² = 46² - 26²
BC² = 1440
BC = √1440
BC = 37.95 in