Answer:
Density = 11.4 g/cm³
Explanation:
Given data:
Density of lead = ?
Height of lead bar = 0.500 cm
Width of lead bar = 1.55 cm
Length of lead bar = 25.00 cm
Mass of lead bar = 220.9 g
Solution:
Density = mass/ volume
Volume of bar = length × width × height
Volume of bar = 25.00 cm × 1.55 cm × 0.500 cm
Volume of bar = 19.4 cm³
Density of bar:
Density = 220.9 g/ 19.4 cm³
Density = 11.4 g/cm³
Answer:
3
Explanation:
It is based on empirical evidence
I think it would be C.100.5cm or D.100.5ml hope that helps
Answer:
56972.17K
Explanation:
P = 4.06kPa = 4.06×10³Pa
V = 14L
n = 0.12 moles
R = 8.314J/Mol.K
T = ?
We need ideal gas equation to solve this question
From ideal gas equation,
PV = nRT
P = pressure of the ideal gas
V = volume the gas occupies
n = number of moles
R = ideal gas constant
T = temperature of the gas
PV = nRT
T = PV / nR
T = (4.06×10³ × 14) / (0.12 × 8.314)
T = 56840 / 0.99768
T = 56972.17K
Note : we have a large number for temperature because we converted the value of pressure from kPa to Pa
Answer:
1) 0.423 m
2) 3.107 mi
3) 68.18 kg
4) 0.0083 mem
5) 0.528 gal
6) 4300 mL
7) 32.4 mem
8) 523.013 km
9) 70.866 in
10) 2.3 yek
Note: I can’t type the about equal to sign or the sign that shows a repeating decimal, so check the image for that and my work.
Explanation: