Answer:
pH = 1.32
Explanation:
H₂M + KOH ------------------------ HM⁻ + H₂O + K⁺
This problem involves a weak diprotic acid which we can solve by realizing they amount to buffer solutions. In the first deprotonation if all the acid is not consumed we will have an equilibrium of a wak acid and its weak conjugate base. Lets see:
So first calculate the moles reacted and produced:
n H₂M = 0.864 g/mol x 1 mol/ 116.072 g = 0.074 mol H₂M
54 mL x 1L / 1000 mL x 0. 0.276 moles/L = 0.015 mol KOH
it is clear that the maleic acid will not be completely consumed, hence treat it as an equilibrium problem of a buffer solution.
moles H₂M left = 0.074 - 0.015 = 0.059
moles HM⁻ produced = 0.015
Using the Henderson - Hasselbach equation to solve for pH:
ph = pKₐ + log ( HM⁻/ HA) = 1.92 + log ( 0.015 / 0.059) = 1.325
Notes: In the HH equation we used the moles of the species since the volume is the same and they will cancel out in the quotient.
For polyprotic acids the second or third deprotonation contribution to the pH when there is still unreacted acid ( Maleic in this case) unreacted.
Answer:
The answer is A. a wave of vibrating electric and magnetic energy.
Runoff (Hope this helped)
Aluminum? It is a chemical element with the symbol Al and atomic number 13. It is a silvery-white, soft, non-magnetic and ductile metal in the boron group. By mass, aluminium is the most abundant metal in the Earth's crust and the third most abundant element
The half-reaction includes either the reduction or the oxidation reaction of the redox reactions. In acidic solution permanganate ion will react with hydrogen ion to yield manganese ion and water.
<h3>What are Redox reactions?</h3>
Redox or oxidation-reduction reactions are the chemical reactions in which the oxidation and the reduction of the chemical species occur simultaneously.
Permanganate (VII) ion is a strong oxidizing agent and gets easily reduced to manganese ion in presence of the hydrogen ion in an acidic solution.
The balanced half-reaction for reduction is shown as,

Learn more about reduction reactions here:
brainly.com/question/10084275
#SPJ4