Answer:
a. resolve the branching patterns (evolutionary history) of the Lophotrochozoa
b. (the same, it is repeated)
Explanation:
Nemertios (ribbon worms) and foronids (horseshoe worms) are closely related groups of lofotrocozoa. Lofotrocozoans, or simply trocozoans (= tribomastic celomados with trocophoric larva) are a group of animals that includes annelids, molluscs, endoprocts, brachiopods and other invertebrates. They represent a crucial superphylum for our understanding of the evolution of bilateral symmetry animals. However, given the inconsistency between molecular and morphological data for these groups, their origins were not entirely clear. In the work linked above, the first records of genomes of the Nemertine worm Notospermus geniculatus and the foronid Phoronis australis are presented, along with transcriptomes along the adult bodies. Our phylogenetic analyzes based on the genome place Nemertinos as the sister group of the taxon that contains Phoronidea and Brachiopoda. It is shown that lofotrocozoans share many families of genes with deuterotomes, suggesting that these two groups retain a common genetic repertoire of bilaterals that do not possess ecdisozoans (arthropods, nematodes) or platizoos (platelets, sydermats). Comparative transcriptomics demonstrates that foronid and brachiopod lofophores are similar not only morphologically, but also at the molecular level. Although the lofophore and vertebrates show very different cephalic structures, the lofophorees express the vertebrate head genes and neuronal marker genes. This finding suggests a common origin of the bilaterial pattern of the head, although different types of head will evolve independently in each lineage. In addition, we recorded innate immunity expansions of lineage-specific and toxin-related genes in both lofotrocozoa and deuterostomes. Together, this study reveals a dual nature of lofotrocozoans, in which the conserved and specific characteristics of the lineage shape their evolution.
Most bacteria are heterotrophic decomposers, which means they depend on other organisms for food and feed on dead matter.
In meiosis, cell division will occur two times. It shall be called Meiosis I and Meiosis II. And Meiosis happens to our sex cells, egg for female and sperm cells for the male. There four stages in Meiosis I, Prophase I will happen when who homologous chromosomes exchange DNA. Metaphase I will happen when the pair move together in the center. Anaphase I is when the who homologous chromosomes are pulled apart to opposite poles. Telophase I is when the the first division of the chromosomes happen. Producing two 24 chromosomes cells. The nest division will produce haploid or 12 chromosome cells. In Propase II, the nuclear walls will disappear once again, in the Metaphase II the cells will meet again in the center. In Anaphase II the chromatids will be pulled apart. And then lastly in the Telophase II, the chromatids will not be 2 haploids. So in Meiosis, 4 sex cells are produced.
Answer:
Glucole
Explanation:
I am not sure if this is what you were asking but yea
The answer is D. Both a and c