Answer:
yes
Step-by-step explanation:
yes, the slope and distance from each side is equal to another
Y-13=4(x-2)
y-13=4x-8
y=4x+5
For this case we have to, by defining properties of powers and roots the following is fulfilled:
![\sqrt [n] {a ^ m} = a ^ {\frac {m} {n}}](https://tex.z-dn.net/?f=%5Csqrt%20%5Bn%5D%20%7Ba%20%5E%20m%7D%20%3D%20a%20%5E%20%7B%5Cfrac%20%7Bm%7D%20%7Bn%7D%7D)
We must rewrite the following expression:
![\sqrt [3] {8 ^ {\frac {1} {4} x}}](https://tex.z-dn.net/?f=%5Csqrt%20%5B3%5D%20%7B8%20%5E%20%7B%5Cfrac%20%7B1%7D%20%7B4%7D%20x%7D%7D)
Applying the property listed we have:
![\sqrt [3] {8 ^ {\frac {1} {4} x}} = 8 ^ {\frac{\frac {1} {4} x} {3} }= 8 ^ {\frac {1} {4 * 3} x} = 8 ^ {\frac {1} {12} x}](https://tex.z-dn.net/?f=%5Csqrt%20%5B3%5D%20%7B8%20%5E%20%7B%5Cfrac%20%7B1%7D%20%7B4%7D%20x%7D%7D%20%3D%208%20%5E%20%7B%5Cfrac%7B%5Cfrac%20%7B1%7D%20%7B4%7D%20x%7D%20%7B3%7D%20%7D%3D%208%20%5E%20%7B%5Cfrac%20%7B1%7D%20%7B4%20%2A%203%7D%20x%7D%20%3D%208%20%5E%20%7B%5Cfrac%20%7B1%7D%20%7B12%7D%20x%7D)
Using the property again we have to:
![8 ^ {\frac {1} {12} x} = \sqrt [12] {8 ^ x}](https://tex.z-dn.net/?f=8%20%5E%20%7B%5Cfrac%20%7B1%7D%20%7B12%7D%20x%7D%20%3D%20%5Csqrt%20%5B12%5D%20%7B8%20%5E%20x%7D)
Thus, the correct option is option C
Answer:
Option C
In the same way as you could factor trinomials on the form of
<span><span><span>x2</span>+bx+c</span><span><span>x2</span>+bx+c</span></span>
You can factor polynomials on the form of
<span><span>a<span>x2</span>+bx+c</span><span>a<span>x2</span>+bx+c</span></span>
If a is positive then you just proceed in the same way as you did previously except now
<span><span>a<span>x2</span>+bx+c=<span>(<span>x+m</span>)</span><span>(<span>ax+n</span>)</span></span><span>a<span>x2</span>+bx+c=<span>(<span>x+m</span>)</span><span>(<span>ax+n</span>)</span></span></span>
<span><span>where c=mn,ac=pq </span><span>and b=p+q=am+<span>n</span></span></span>
Answer:

Step-by-step explanation:
The given line passes through the points,
and
.
We can find the slope using the following;

or

Using the first formula;
We obtain;




The correct answer is C.