Answer:
The probability that the mean monitor life would be greater than 96.3 months in a sample of 84 monitors
P(X⁻ ≥ 96.3) = 0.0087
Step-by-step explanation:
<u><em>Step(i):-</em></u>
Given that the mean of the Population = 95
Given that the standard deviation of the Population = 5
Let 'X' be the random variable in a normal distribution
Let X⁻ = 96.3
Given that the size 'n' = 84 monitors
<u><em>Step(ii):-</em></u>
<u><em>The Empirical rule</em></u>


Z = 2.383
The probability that the mean monitor life would be greater than 96.3 months in a sample of 84 monitors
P(X⁻ ≥ 96.3) = P(Z≥2.383)
= 1- P( Z<2.383)
= 1-( 0.5 -+A(2.38))
= 0.5 - A(2.38)
= 0.5 -0.4913
= 0.0087
<u><em>Final answer:-</em></u>
The probability that the mean monitor life would be greater than 96.3 months in a sample of 84 monitors
P(X⁻ ≥ 96.3) = 0.0087
Answer: 9 x 
Step-by-step explanation:
The composite function combines the palm tree and the seed functions
The composite function is t(d) = 60d + 20
<h3>How to determine the composite functions</h3>
The functions are given as:
Number of palm trees: t(s) = 3s + 20
Number of seeds: s(d) = 20d
The composite function that represents the number of palm trees Carlos can expect to grow over a certain number of days is represented as:
t(s(d))
This is calculated as:
t(s(d)) = 3s(d) + 20
Substitute s(d) = 20d
t(s(d)) = 3 * 20d + 20
Evaluate the product
t(s(d)) = 60d + 20
Rewrite as:
t(d) = 60d + 20
Hence, the composite function is t(d) = 60d + 20
Read more about composite functions at:
brainly.com/question/10687170
Answer:
no
Step-by-step explanation:
y=mx+b
hope this helps
Diagram not attached, please add the question.