Answer:
The length of the side adjacent to that angle is 26 units
Step-by-step explanation:
We are given
In a right triangle, the side opposite a 33 degree angle is 17 units
Firstly, we will draw diagram
we can use trig

now, we can solve for x


So,
The length of the side adjacent to that angle is 26 units
So all you have to do is multiply 400 times 400 which is 160,000 and divide 169,000 to 2 which is 80,000
Answer:
Hamburger Chicken
Adults 65 60 125
children 55 20 75
120 80 200
a)What is the probability that a randomly selected individual is an adult?
Total no. of adults = 125
Total no. of people 200
The probability that a randomly selected individual is an adult = 
b) What is the probability that a randomly selected individual is a child and prefers chicken?
No. of child prefers chicken = 20
The probability that a randomly selected individual is a child and prefers chicken= 
c)Given the person is a child, what is the probability that this child prefers a hamburger?
No. of children prefer hamburger = 55
No. of child = 75
The probability that this child prefers a hamburger= 
d) Assume we know that a person has ordered chicken, what is the probability that this individual is an adult?
No. of adults prefer chicken = 60
No. of total people like chicken = 80
A person has ordered chicken, the probability that this individual is an adult= 
1.8, Problem 37: A lidless cardboard box is to be made with a volume of 4 m3
. Find the
dimensions of the box that requires the least amount of cardboard.
Solution: If the dimensions of our box are x, y, and z, then we’re seeking to minimize
A(x, y, z) = xy + 2xz + 2yz subject to the constraint that xyz = 4. Our first step is to make
the first function a function of just 2 variables. From xyz = 4, we see z = 4/xy, and if we substitute
this into A(x, y, z), we obtain a new function A(x, y) = xy + 8/y + 8/x. Since we’re optimizing
something, we want to calculate the critical points, which occur when Ax = Ay = 0 or either Ax
or Ay is undefined. If Ax or Ay is undefined, then x = 0 or y = 0, which means xyz = 4 can’t
hold. So, we calculate when Ax = 0 = Ay. Ax = y − 8/x2 = 0 and Ay = x − 8/y2 = 0. From
these, we obtain x
2y = 8 = xy2
. This forces x = y = 2, which forces z = 1. Calculating second
derivatives and applying the second derivative test, we see that (x, y) = (2, 2) is a local minimum
for A(x, y). To show it’s an absolute minimum, first notice that A(x, y) is defined for all choices
of x and y that are positive (if x and y are arbitrarily large, you can still make z REALLY small
so that xyz = 4 still). Therefore, the domain is NOT a closed and bounded region (it’s neither
closed nor bounded), so you can’t apply the Extreme Value Theorem. However, you can salvage
something: observe what happens to A(x, y) as x → 0, as y → 0, as x → ∞, and y → ∞. In each
of these cases, at least one of the variables must go to ∞, meaning that A(x, y) goes to ∞. Thus,
moving away from (2, 2) forces A(x, y) to increase, and so (2, 2) is an absolute minimum for A(x, y).
Answer:
That depends on which operations you want to do first. The order of operations affect to outcome of the equation.
In this case:
15 - (3 x 4) + 9 = 12